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Abstract. A mechanism for the JWKB formulae in one-dimensional guantum mechanics to
quantize energy levels exactly is discussed. This mechanism is most easily applied when considered
potentials are represented (by a suitable change of variable) as periodic ones. To be successful, the
mechanism demands potentials with no more than one second-order pole and no more than two
(occasionally four) turning points in the basic period strips. Itthen selects 11 potentials which have
beenknowninthe literature for along time. Itis also shown that the exactness of the supersymmetric
(SUSY) JWKB formulae for these 11 potentials follows directly from the corresponding exactness
of the conventional ones being a consequence of the singularity structures of the potentials. A
relation of these singularity structures to the shape invariance symmetry of the quantized potentials
is shown to guarantee the conventional and SUSY JWKB formulae to be exact simultaneously.
The relevant two non-perturbative theorems describing these facts are formulated and proved.

1. Introduction

It has long been known that for some number of potentials in one-dimensional (1D) quantization
problems (and also in the casesmflimensional problems which can be reduced to 1D
ones) their corresponding JWKB-quantization formulae for energy levels (or some of their
generalizations [1] or modifications [6]) are exact [2-5, 11], whilst in most solvable cases (i.e.
the ones for which their corresponding energy spectrum is known by other means) the JWKB
quantization appears to be only approximate.

It was also noticed that the same solvable potentials which are quantized accurately by
JWKB formulae are also quantized exactly when the supersymmetric (SUSY) modification of
the JWKB method is used [7-9].

A class of shape invariant potentials are also known to provide exampless&bSUSY
JWKB (SJWKB) quantization formulae [28—-31]. But, in general, the SJWKB formulae do
not provide accurate quantization conditions in most cases of solvable potentials [10, 35, 36].

Therefore, the following questions still need to be answered:

(1) When can the JWKB formulae, both conventional and SUSY, be exact?

(2) Why are the conventional and SJWKB formulae exact simultaneously?

(3) Are there some (possibly simple) criteria which allow us to judge if a given JWKB
(SJWKB) formula is exact?
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Before reporting our answers to the above questions let us briefly summarize the basic
facts related directly to these questions and established by different authors.

First, Rosenzweig and Krieger [4] in the case of conventional JWKB formulae and
Crescimanno [11] in the case of SUSY formulae have constructed the proofs of their exactness
for some potentials based on thedfran and Fsman [2] approach to 1D semiclassics.
However, from our point of view, the correctness of these proofs seems to be doubtful because
of erroneous calculations of necessary phases when functions have infinitely many roots and
poles.

Secondly, Raghunathaat al [33] have shown that some SJWKB formulae are exact at
the semiclassical level, whilst Dutt al [30] have proved this for a class of shape invariant
potentials.

Finally, Barclay and Maxwell [31] have used the result of Dattal [30] to suggest the
form of superpotentials satisfying the shape invariance symmetry condition whilst Barclay
et al [34] have shown that for another class of shape invariant potentials discovered by this
group [35, 36] the corresponding SJWKB formulae are not exact.

The following results established in this paper form our answers to the questions posed
above. In their formulation we have taken into account the fact that each 1D quantization
problem caralwaysbe transformed into its periodic form (see section 2).

(a) A unifying condition for potentials to be quantized exactly by the JWKB (SJWKB)
formulae is the shape invariance of these potentials accompanied by some particular
analytical properties of the latter when considered as functioo@oplexsuperpotentials.

If these properties are confirmed then both types of JWKB quantizations are exact
simultaneously.

(b) The properties of the potentials mentioned in (a) are in direct relation to analytic properties
and symmetries of the potentials considered on the complex planepdsitmnvariable.

The potentials to be provided with the properties mentioned above should have no more
than two (occasionally four) turning points and no more than one pole (of the order of no
higher than two) in their basic period strip.

The properties of (b) can be established independently of (a) and follow from a basic
mechanism causing the JWKB formulae to be exact. An effective action of this mechanism
depends on symmetry properties of the periodic Stokes graphs corresponding to the considered
potentials.

Our analysis which made use of the mechanism can be therefore considarstwtsod
of searching for solutions to the shape invariance condition when the latter is also expected to
ensure that the JWKB (SJWKB) quantization is exact.

To obtain the results reported in (a) and (b) above, the fundamental solutions [1, 13—
15, 17, 32] have been found to be the most appropriate. In this paper, the descriptions
approximate semiclassical solutions, and JWKB approximations are exclusively understood
as the corresponding approximations to the fundamental solutions. This choice has serious
consequences for the form of the JWKB approximations which can differ substantially from
the conventional ones [12,24,25]. In particular, the presence of simple and second-order poles
in considered potentials generates unavoidable changes in the corresponding JWKB formulae.

Each set of the fundamental solutions is accompanied by the so-called Stokes graph. Both
the fundamental solutions and the Stokes graphs provide us with a uniform and systematic way
of solving any interesting 1D problem both exactly and in the semiclassical limit [1, 13-16].
The main property of the Stokes graph is to take into accglobial features of a given problem
considered in the complex planes of variables entered into the problem (i.e. a position variable,
energy, the Planck constant, some potential parameter(s), etc). It is just these global features
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determining global structures of corresponding Stokes graphs which allow us to justify all the
known cases of exact JWKB formulae, as well as to gain insight as to what decides whether a
given JWKB formula can be exact or not.

This paper is organized in the following way.

Inthe next section, some necessary details of material from our earlier papers[13,14,16,23]
are included to make the present paper selfcontained. In this section, a mechanism generating
exact JWKB formulae is formulated and the periodicity of potentials and their Stokes graphs are
established as the necessary conditions for the mechanism to work. However, since every 1D
quantum mechanical problem can be formulated as a periodic one this condition rather suggests
the best method by which the action of the mechanism can be studied. In consequence, the real
conditions determining the possible success of the JWKB formula in being exact are related
to the singularity structure and the distribution of turning points in the basic period strip, as
was reported in point (b) above.

The conditions found in section 2 are next applied in section 3 to select ten periodic
potentials with the exact JWKB formulae.

In section 4, the JWKB exactness of energy levels of some aperiodic potentials
corresponding to the radial parts of the Coulomb and 3D isotropic harmonic potentials are
shown to explicitly follow from the periodic ones as aresult of the change-of-variable procedure
which preserves the form of the Sédinger equation [27]. In this section, the harmonic
oscilator potential is also mentioned with its exceptional mechanism for JWKB formula
exactness.

In section 5, a generalization of the results of the previous section is described invoking
some of our earlier results.

In section 6, the SUSY version of the conventional exact JWKB formulae found in the
preceding section is shown to be exact too, by direct calculations. The sufficient conditions
for the simultaneous exactness of the JWKB and SJWKB formulae are established, one of
which is the shape invariance of the considered potentials. Two corresponding theorems are
formulated in this section.

In section 7, the results of this paper are summarized and some conclusions are drawn.

2. Global symmetries of Stokes graphs and quantization

2.1. Quantization
Consider the Scldinger equation written in the following form:
W' (x,E, 1) —A2q(x, E,)W(x, E, 1) =0 (2.1)

where: 12 = 2mh 2, q(x, E, 1) = V(x, 1) — E and a potential/ (x, 1) is assumed to be
a meromorphic function of and 1 with the following asymptotic behaviour for — +oo
(h — 0):

1 1
Vix, A) ~ Vo(x)+xV1(x)+ﬁV2(x)+"'~ (2.2)

Together withg(x, E, 1), we shall consider a functiog(x, E, 1) = q(x, E, 1) +
8(x, E, A)/2?, whered(x, E, 1) behaves according to (2.2) when— +oco. The necessity of
introducing this term while constructing the fundamental solutions to (2.1) has been discussed
in our recent paper [23]. The precise formsgk, E, A) depends on the types of singularities
of g(x, E, 1) and, in particular, on whether the latter possesses simple or second-order poles
(see below).
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Let E bereal and lety, xp, ..., betheroots of (x, E, A), y1, y2, .. . its simple poles and
., k=1,2,...its second-or higher-order poles. Some of them can therefore be real but the
rest are complex and conjugated pairwise.

For each poink;, y;,i = 1,2, ..., let us construct the actions

W,-’(x,E,A)zf Vg, E, »)dy
Wip(-vav)")Zf \/q(vaa)")dy
Yi

A set of fundamental solutions is attached in a unique way to the so-called Stokes graph
corresponding to a given potentitllx). Each Stokes graph is a collection of lines (Stokes
lines) in the complex-plane which are loci of points where the real parts of action functions
defined by (2.3) vanish. The fundamental solutions are defined in connected domains called
sectors. Each sector contains one of the singular peiraisd its boundary consists of Stokes
lines, x; and the chosep; itself: see figure 1. Quantization of 1D quantum systems with
the help of fundamental solutions and the construction of these solutions have been described
in many of our earlier papers [1, 13,14, 16, 23, 32]. A typical scheme of such a quantization
particularly useful for meromorphic potentials has been discussed in [23]. We shall also adopt
this scheme here. Nevertheless, to make our paper selfcontained we shall remind the reader of
the basic ingredients of the scheme: namely, we consider the case of two real turning points,
x1, X2, the rest being complex and conjugated pairwise (we asgumeE, 1) to be real). It
is assumed also that our physical problem is limited to a segmeftx < z», at the ends of
which the potential has poles. In particular, we can push any ofor both of them) taroo,
respectively.

To construct a pattern of the corresponding quantization condition for ereayyd to
simultaneously handle the cases of second- and higher-order poles we assonte the
second-order pole ang to be the higher ones.

It is also necessary to fix, to some extent, the closest environment of the real axis of the
x-plane in order to plot a piece of the Stokes graph which will give sufficient information to
write the quantization condition. To this end, we assumandxz as well ast4 andx, to be
another four turning points, ang andzsz another two second-order polesWfx, 1) closest
to the real axis. Then a possible section of the Stokes graph is shown in figure 1 [23].

To this Stokes graph we can attach to each of its sec§grhe corresponding fundamental
solution, ¥, having the following structure [2,13,14,17,23]:

(2.3)

We(x) = G4 () W@y (x) (2.4)
where

xe(x) =1 +Z [—;—;]n /: dy1 /:1 dy»

n>1

Yn-1
f Ay, (yD)@(y2) . . . @ (y,) (1 — €2 W= WO,

2k
x(1— e*Z(fk)»(Wi ) —W; ()’2)))

. (l _ e—ZUM(Wi(_\’;,71)—W1(yn))) (2_5)

with
_ S0 _19»m , 54%W)
g () 4g:(y) 16g3(y)

w(y) (2.6)
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Re x

Figure 1. The Stokes graph corresponding to general quantization rule (2.7) [23].

In the above formulae; are some of the roots lying at the boundanspiando;, = +1
is chosen each time so as to ensure a negative sign @;R&(x)) for the whole sectos.

One of the conditions introduced earlier determining the fun&ianE, 1) is to make all
the multiple integrals in (2.5) convergent at their lower limits It appears that for this reason
the function has to be defined as non-zero only, ifs a second-order pole of the potential
considered. The second reason appears when the fundamental solutions are to be continued to
a point being a simple or double pole for the potential: namely, for both these cases we always
have to correct the potential by the same téim E, A) = (2(x — z;))~2 ateachsimple or
double pole of the potential. Of course, inthe case of an infinite number of these singularities the
arising infinite series has to be summed to some function having them as its simple and double
poles. Thes-terms correcting the potentials considered in the above way we shall call Langer
corrections [23] (see also [22] where this correction appeared for the first time in this role).

Despite the necessity to equjfpx, E, A) (andw) in thes-term, there is still a possibility to
changetheformaf(x, E, 1) (andw) by the substitutiod(x) — §(x)+ f (x, A), wheref (x, 1)
is an arbitrary meromorphic function @fnot containing, however, the original singularities of
q(x, E, 1). By such a substitution both the original and the new solutions (2.4) coincide (up
to a multiplicative constant, see [24] for details). We shall use this possibility in our further
considerations.

There is no unique way of writing the quantization condition corresponding to the figure.
Three possible forms of this condition can be written as [16, 23]:

-3\, E)Xxo,3(0, E ~4(A, E)xo3(M, E
exp[_kyg é;(x’k,E)dx} __x1-3G E)Xo 3 E) _ xasa(h E)Xo 3k E)
K X130, E) xo-3(A, E) X13(A, E)xoa(A, E)
(2.7
and . (A, E)k, j = 1,2, 3,4 are calculated by (2.5) for — z;. The closed integration

pathK is shown in figure 1. In the figure, the patps. s, y»— 3, etc are the integration paths
in formula (2.5), whilst the wavy lines designate corresponding cuts of-fReemann surface
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Figure 2. The Stokes graph for the Morse-type potential (3.2).
Im x
Re x

Figure 3. The Stokes graph for the first of the potentials (3.4).

upon which all the fundamental solutions are defined. The same designation conventions are
maintained in the remaining figures 2—11.

2.2. Symmetry conditions

As we have already mentioned several times, each 1D quantum mechanical problem can be
transformed into a periodic one by a suitable variable transformation: namely, if it is a non-
periodic problem defined on a segment ¢) (as inthe case of figure 1) then the transformation

x — (726" +z1)/(1 + €") can be taken. If it is defined on a hatf( co) of the real axis then

the corresponding transformationkis— z; +€*. Finally, when it is defined on the whole real
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Im x

S

TIi
Vo3 Yig K 1
2 Re x

Figure 4. The Stokes graphs corresponding to the second of the potentials (3.4) and the quantization
formulae (3.9).

axis, the transformation — sinh3 can be performed.

We could proceed, therefore, considering only periodic potentials throughout. However,
below we shall provide arguments to justify that the periodic formulation of the considered
problems is the most suitable for the exactness problem discussed in this paper.

Tothis end, let us note that conditions (2.7)@xact The lhs of the first condition has only
the JWKB form. If we substitute eagh_. ; (A, E) in (2.7) by unity (which these coefficients
approach when. — +o00) we obtain the well known JWKB-quantization rule. But in this
way the latter is, in general, only an approximation to (2.7). The exceptions to this are the
following three cases:

(19 All x4 ; (A, E) in (2.7) are really equal to (identical with) 1.
(2% They all cancel mutually for some reason.
(3°) Both the above cases take place: i.e. somg.f;(x, E) satisfy P and some 2

The first case is very rare and the only known example of it is the harmonic oscillator
potential [32]. This case needs, in fact, for a given, ; (1, E) a possibility to deform its
integration path properly to make all the integrations in (2.6) vanishing: i.e., this condition
demands some particular topology of turning points ontigane to occur.

The next case, if it is not to happen accidentally, can take place due to the possibility of
coefficients entering into formula (2.7) (where the coefficients can appear in pairs with their
complex conjugate partners dividing them) or due to some possible symmetry of the potential
V (x, 1) relating to they -coefficients present in the formulae. We shall show in the following
sections that the latter case is the main reason for all known cases of JWKB formulae which
provide us with the exact quantization conditions. In fact, the symmetry properties of the
potential, as well as a particular topology of its turning point and pole distribution cooperating
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a) Vo(0)

y2~3

Vo3

Figure 5. The second of potentials (3.10) and the Stokes graphs corresponding to the quantization
formulae (3.12).

together, are the most frequent ways to realize JWKB formula exactness.

The above statement means that the corresponding Stokes graphs and the underlying
potentials have to b&évariant under the corresponding symmetry transformations. It is
important to realize that this symmetry is just theariance the latter being theecessary
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Im x

» 27T

Re x

Figure 6. The Stokes graph corresponding to the formula (3.14) quantizing the potentizdilP
and Teller.

Im x
1
Vi Yip
K
N
-t X X, Tt
21
3 _ 3
3 Vi 1 Vi

Figure 7. The Stokes graphs corresponding to formula (3.16) for anotb&nlPTeller potential.
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Im x

Figure 8. The Stokes graph corresponding to the exact JWKB formula (3.17).

condition for the coefficientg in (2.7) to be related by such transformations (otherwise we
would get only a relation betweadtifferentdynamics connected by these transformations).
Suppose, therefore, thatx, E, A) satisfies the following symmetry relation:
q(y(x), E, %) =q(x, E, ) (2.8)
for x — y(x) (general properties of(x) to keepg(y(x), E, ») meromorphic have been
discussed in [23]). We shall also assume that it is always possible to find (if necessary)
3(x, E, 1) such that (2.8) is satisfied lgyx, E, ) as well under the same transformation.

In generalx — y(x) is a variable transformation in the Séliinger equation leading us
to a newg-function as given by the following formula:

3P Eym(x)} . (2.9)

4y2(x) 2 y(x)
Itis now easy to see that by using the earlier mentioned freedom in formiggftirection
corresponding to a newy as given by (2.9), we can achieve the foérty(x), E, 1)y"2(x)
E)(y)removing the second term in the rhs of (2.9) and adding (if necessary) the Langer term
22 y2(x).
’ If the corresponding Stokes graph is now to be invariant under such a transformation
then the full set of actions (2.3) which defines this Stokes graph has to be invariant too, up to
multiplicative constants. But, according to (2.8) and the above comment, we have

x X y(x) d
/ Vq(§, E, 1) dg =/ VG &), r, E)dE = vé(E,Es)»)—é (2.10)

y(xXe) )”(5)
where, according to (2.8); = y(x;) are again (other) turning points &fx, E, A).

From (2.9) we can conclude that this action set invariance is achiey&d jf= C, where
Cisreal.

Therefore, the allowed transformationse) are linear. Since they constitute a group then
it is easy to see that ilC| # 1 theng(x, E, 1) has to have common accumulation points of

1
q(x, E, ) — q(y(x), E, M)y (x) + = [
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a) Im x
1
Y1-3 Yi-2
L KX Re x
o N T
_3
21 Im imn -3m
Yi-3 Yi-2
1
Rex=-1x, Rex=-Ttx; Rex=x Rex=x, Rex=Tex, Rex=TeX,
b) Im X
”‘“% 2m
2
2 TTi —< 1
UI/I,\%
< T, - 1 3
Yo-3 - K\%\ Yis  Rex
/<x1\__lm ] /&5/
Yoa MM —211i i< "
M ~3mi >
=21
Rex=x, Rex=x, Rex=-x; Rex=x,

Figure 9. The Stokes graphs corresponding to the potentigs, 1) (a) andVio(x, ) (b), given
by formulae (3.18).

their roots and poles. Therefore, we shall limit further considerations to less singular cases of
g(x, E, A), which means that we shall pat = +1. The latter limitation leaves us with only
two types of allowed symmetry transformations: one which is essentially a reflaction-x
and the other a complex translation of th@lane.
In this way we have shown that the most appropriate forms of potentials for discussing



368 P Milczarski and S Giller

a)
K )
b) Im @,
sz(p
m Re @,

Figure 10. The two-sheeteghy-Riemann surface for the unbroken superpotegiaicase £).

their possible JWKB quantization exactness are their periodic representations. The latter can
be additionally accompanied by the reflection transformation.

Therefore, in the next section, we shall consider systematically the periodic potentials
only.
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a) Im @

Figure 11. The two-sheeteghy-Riemann surface for broken superpotentigicase ).

3. Periodic potentials quantized exactly by their JWKB formulae

3.1. Periodic holomorphic (entire) potentials

Ingeneralg (x, E, ) as ameromorphidunction of complex can be periodic with at most two
independent (in general complex) periods [18]. However, in the case of helogorphic
q(x, E, ») can have only one period (being a constant in the presence of the second one).
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Further, sincey(x, E, 1) is assumed to be real for its real arguments then its period can be
only real or only pure imaginary. For an obvious reason we shall consider only the last case,
assuming for simplicity that the period is equal toi 2In this caseq (x, E, 1) can be expanded
into the following Fourier series [18] (note that for holomorphic potentials we can always put
8(x, E, ») = 0):
g E.N) = > gu(E, 0e". (3.1)
X=—00

If the behaviour ofy(x, E, A) at x-infinity is to be of a finite type, series (3.1) has to be
abbreviated providing us with a finite sum. The latter should contain at least three terms if
we wantg (x, E, 1) to possess bound states. keand! (k > [ + 1) be, therefore, the upper
and lower limits of this abbreviation, respectively. A few cases for whiehl = 2, 3, 4 have
been considered in detail in [32]. Only one of them witk- 2 and! = 0 has been found to
be quantized JWKB exactly and is considered in some detail below.

In these investigations we shall make intensive use of the Weierstrass product
representation for the abbreviated series (3.1) in order to perform necessary calculation of
phases ofy(x, E, 1) alone as well as its functions. This representation is considered in
appendix A. There we have also explicitly calculated the relevant total phagés,af, 1)
for the casek = 2, I = 0 considered just below to provide us with an example of such
calculations.

Case:k =2,/ =0. The case can be written as

qg1(x, E,A) = a(E, \)e® —2B(E, e +y(E, A) (3.2)
wherea(E, A), B(E,)) andy(E, 1) are known functions o andA. In particular, for
a = B =1andy = —E, we get the well known Morse potential [19].

With o, B,y > 0 andp? > ay we get forg;(x, E, 1) = 0 two real roots (modulo:2i)
and the corresponding Stokes graph shown in figure 2, where In(8 & £/(B2 — ay)).
The quantization condition (2.7) according to the figure now looks as follows:

1 X1—>3()"a E)XZ%@()‘W E)
exp| — A 2(x, A, E)dx | = — . 3.3
p|: 7§<QI ( ) ] X1-3(A, E)xo3(X, E) 33)

It follows from the figure thaf,—.3 = x,,3 = 1 andxi3 = x;_3. The first of these
identities is satisfied because both the pathss and x,_,3 can be pushed out to infinity,
whilst the second is satisfied because of the periodicity of the corresponding integrands in
formulae (2.6) forxi_.3 and x;_,3. Therefore, we are left finally with the JWKB formula
which givesexactenergy levels in this case.

It should be noticed, however, that the equality of coefficientss and x,_ 3 is not
immediate, i.e. it does not follow as a direct result of the periodicity,¢f, E, 1). First we
have to define the total phaseaqf(x, E, 1) according to the prescriptions of appendix A in
order to define uniquely its square roots present in the coefficignts and x;_, 3. This has
been done in appendix A where we have found that the phage6wfE, 1) on the integration
paths ofy1_,3 andy;_, 5 differ exactly by 4r, i.e. by the period of the square rootszefx, E, 1)
just mentioned.

It should now be stressed that to get the last result the phasese{gheentiafactor in
the corresponding Weierstrass product have had to be taken into account: i.e., counting the
relevant phases provided by the roots;ofx, E, A) alonewould give us arincorrect result.

This is what was not taken into account in the corresponding calculations of Rosenzweig and
Krieger [4] and Crescimanno [11]. Another possible source of erroneous calculations of the
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phases of; (x, E, A) provided by these authors could be the arbitrary way they estimated these
phases which were provided by rootsgafx, E, 1), spread infinitely on the complex plane.
The only correct way of performing these calculations has to be relied on the corresponding
Weierstrass product representationyofx, E, A).

It can be shown that considering higher valuescef [ (>3) does not lead us to the
exact JWKB formulae since in these cases the conditions used so far (two real turning points:
reality and periodicity) are not sufficient to cause full cancellation @f the corresponding
quantization conditions [32]. The main reason for that is that for higher valugs-dfan
increasing number of complex turning points in a basic strip of periodicity causetering the
corresponding quantization conditions to be no longer related by the condition of periodicity,
because all the relevant integrations are performed inside the same basic strip.

The above situation does not change even if we additionally mékeE, 1) an even
function ofx.

3.2. Periodic meromorphic potentials

The reality condition demanded far(x, E, 1) allows us to choose its two possible basic
periods: pure real and pure imaginary.

Within this class of potentials we can obviously igngre, E, 1) with a real period but
without real poles. We must therefore consider the following possibilitiegfor E, 1):

(a) It is holomorphic in some vicinity of the real axis but meromorphic outside it and is
periodic with its unique imaginary period equal t®i2

(b) It is meromorphic on the real axis with the only imaginary period equatkio 2

(c) Itis meromorphic on the real axis with the only real period equalito 2

(d) It is meromorphic on the real axis with two periods: a real one equattartl a pure
imaginary one equal taw, with @ being any positive real number.

Case (a). The analysis performed in [32] showed that the following two potentials satisfying
the assumption of two real roots are allowed:

1€ + B 1€ + B
V(x) = - T - - 1 - = a ;ﬁ T
2sinh3(x —ia)sinh3(x +ia) ~ coshx —cosa
(3.4)
2€" + B2
Va(x) = 51
cosif 1x

the second of which is essentially the Rosen—Morse one [20].
To obtain from (3.4) the potentials which would have bound states some conditions on
their parameters have to be satisfied. For the first potential they are

o1 > 0> /31 (35)
with the quantized energl varying in the following range:
N2
— 22x(a1 x) <E <O
(Jlar —x) = |yD?* + 2ylloex — x[(1 — cosa) (3.6)
x =,/a?+ B2+ 20161 cOSa y = B1 + 201 COSa.

For the second potential in (3.4), we can gpt> 0 > B, without losing its generality so
that the corresponding energy range is

B3

az — B2

< E <O. (3.7)
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A relevant Stokes graph corresponding to the first of the potentials (3.4) is shown in figure 3.
It follows immediately from the figure that the JWKB formula

exp[—)\f [M E}zdx] =-1 (3.8)
K

coshx — cosa

cannot be exact in this case since the coefficignts, andy,_.3 are not related by periodicity
and do not cancel in the exact condition.

The Stokes graph for the second of the potentials (3.4) is shown in figure 4. However,
in order to continue the relevant solutions corresponding to sectors 1 and 2 to secto® 3 and
(the latter two containing the second-order poles at +i, respectively) we have to choose
properly thes-piece ofw, as defined by (2.7), to admit the integrals in (2.6) to converge at the
poles. One can easily convince oneself that the chbiee [4 cosh(x/2)]~? is sufficient to
achieve that aim, leaving simultaneously the original form of the Stokes graph of figa)re 4(
unchanged: i.e., it redefines the coefficigatinto g5(= g — 1/(42)?) only. Then, figure 4
provides us with the following quantization condition for the case:

exp| i ?g 0 thr— g5z oo | Xinale E)xons(h E) 3.9)
K cosif 2x x1-3(, E)xp3(h, E) '

According to appendix A the total change of the phasg,6f, E, 1) in (3.9) is determined
only by the distributions of zeros of its numerator, as well as by the corresponding zeros of
coslt(x/2) as the denominator. Calculated (according to the rules of appendix A) with respect
to the points of the lines Im = 7 and Imx = —x (shifted by the period 2i) the numerator
phase change amounts ta 2which is exactly the same as the total phase change of the
denominator. Therefore, the total phase changg,0f, EX) is exactly equal to zero: in this
case, that is sufficient for;.3 andy,_, 5, as well as forx,_, 3 andy,_, 3, to coincide. It means
that the rhs of (3.9) is equal tel and the JWKB formula corresponding to (3.9isactin
the case considered possessing the ‘standard’ Bailey form [3].

Some possible different choices of Langer corrections leading us to different, but still
exact, JWKB formulae are described in [32].

Case (b). Assuming the presence of simple or second-order polg&dnE, 1) itis clear that

we can allow only one such pole in the main period strip. We assume its localizatica at

In this way, the problem of quantization has to be reduced to a half of the real axis which
we choose, without loss of generality, to be the right one. The allowed classes of potentials
are [32]

X
Ve(x,A) = ——=+—-
sint? x

Reasoning, as in the previous case, we have found that the JWKB formula for the first
potential cannot be exact.

For the second potential in (3.10), we can assume its paramgtensi 3, (without losing
generality) satisfy the following conditions:

Ba,a2+ B2 >0> 200+ B >

2 A1
— i < E < 4as (3.11)
az+ B2
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to ensure an existence of bound states in the local potential well. The shape of the
potential is shown in figure &f. The potential has to be modified by the ‘standatd’

term: § = (4sinh(x/2))~? to allow the construction of the fundamental solutioncat 0

which results with the changg& — B, + (41)~? in the potential. The quantization condition
corresponding to the Stokes graph of figurb)3(ow reads as

e+ + L2 % 2 —
exp[ = Ayg [—“2 ik E] dx] _ _Xao2(E, Mxsoo B ) (3.12)
K S|nh2 % XlHZ(Es )‘*)X3~>2(E7 )")

It follows from (3.12) and figure %) that in this case the coefficienjg_,, and x;_,5
cancel mutually using periodicity arguments (the phase difference produced by the numerator
of gs(x, E, 1) and equal to 2 for the two integration pathg,_.» andy,_, 5 is cancelled by its
denominator sinf(x/2)), whilst the remaining two coefficients cancel by their reality (they
are real and complex conjugated to each other). The JWKB formula which follows from (3.12)
is, thereforegxact

Again it is worth noting that the considered potential can be modified by-fhhaction
in a different way to generate at least four zeros in the basic period strip of the corresponding
Stokes graph allowing the numerator of the modifigdx, £1) to change its phase byr4
between the earlier mentioned paths (see [32]).

The possibility of making the last modification by enlarging the number of roots in the
basic period strip to four still suggests performing its completion in a different manner: namely,
by adding the term coinciding exactly with the second of the potentials (3.4). Of course we
also need to add the corresponding standatetrm to the potential obtained in this way. The
resulting potential does not, however, satisfy the rule of no more than two turning points in the
period strip, so that the possibility of the exact JWKB-quantization condition to appear should
largely depend on symmetry properties of the releyanbefficients. This potential can have
bound states for the following regime of its parameters (see the formula below for definition
of the parameters)y, o’ real and sufficiently close to zero, agdg’ > 0. The Stokes graph
corresponding to the case is shown in figure 6 and the quantization condition related to it is

1
exp[ B ’\f [ae’f +B+ s . e — B — s - E} de} _ X2(E W) xas2(E W)
kL sinif3 costf K1-2(E, M xXga(E, A)
(3.13)

It follows from the figure that the coefficienyg_.» andx,_, 5 have to cancel mutually by
periodicity, but not the remaining two: no symmetry (except the complex conjugation) relates
these two coefficients. However, when= «’ = 0 the potential in (3.13) becomes invariant
under the reflectiom — —x and then the coefficienjs_.» andy,_, 5 are equal only by the last
symmetry. (Note, however, the role played in fulfilling this symmetry byod the difference
between the arguments &§(x, E, 1) corresponding to the case the latter takes on the paths
y1-2 andy;_, 5.) Therefore, the following quantization condition:

1 ry L :
exp[—,\yﬁ [’“W _ Pt e —E] dx] =-1 (3.14)
K

H X X
sinfP £ cosif £

is exact The potential in the above formula is obgthl and Teller [21].
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Case (c). Thiscase contains four potentials but only the following two are hoped to be exactly
guantized JWKB [32]:

sinx +
V7(x,)x)=—a ;Xﬂ —T<x<m
cos'3 o , (3.15)
Va(r. ) asinx+p  o'sinx +p8 0 -
X,\) = <X
? cog Sir? %

the second of which is essentially another 68Ehl-Teller’s [21].

Consider therefore the first of them. In order to have the binding potential well we have
to assume > 0 but the choice of sign af is arbitrary since both cases are equivalent. So we
shall pute > O for convenience. Next we must note, however, that asymmetry introduced into
the potential byr # 0 completely eliminates the possibility of using the periodicity arguments
that makex = 0 in (3.15). Once more, we have to chodseking it in its ‘standard’ form:

8§ = (4cogx/2))~2, obtaining the Stokes graph of figure 7. It is clear from the figure that
the coefficients(;. _» andyi_2, as well asy;_, _, andyi_, ,, are now equal using periodicity
arguments. Consequently, the following JWKB-quantization formula:

B+ 1Tlx2 3
— A - F =-1 A
exp[ ﬁ[ cod & dx (3.16)
is exact

Again some modifications of the above formula are possible [32].

Considering the second of the potentials (3.15) we first remove asymmetry in the latter
(for the same reason as discussed earlier) puttisg o’ = 0 and next we notice that in the
basic period strip-7 < Rex < m, the number of the four turning points is sufficient to
make the relevant periodic across the strip. Therefore, the only necessary modification of
the potential is the ‘standard’ choice fér i.e.,§ = (4sin(x/2))~2 + (4 cogx/2))~? which
gives the Stokes graph shown in figure 8. We obtain the following relations from the figure:
X153 = X-1-3 = X1-3 and xo3 = xg_3. The first equality in both of these equality
sequences follows from the parity invariance of the potential considered, whilst the second
in the first one is satisfied using periodicity arguments. Therefore, the following JWKB-
quantization condition:

I+ _1 I+ _1 %
o of [l S ]es e
K 2 3

is exact

Case (d). Examples of this case are provided by elliptic functions [18]. The detailed analysis
performed failed to provide us with the exact JWKB formulae [32].

3.3. Four turning points in the basic period strip

This possibility has been already considered in the particular cases of the potésititaland

Vg(x), shown in their exact JWKB formulae (3.16) and (3.17). The symmetric distributions
of their four turning points in basic period strips guaranteed the success of these formulae to
quantize exactly their energy levels.
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There is still another pair of potentials with four turning points in their basic period strip
quantized exactly by the JWKB formulae. They are

v _a+psinx T b1

g(X,)\)—W —§<X<+E Ol>,3>0

= () -
+ B sinh ‘

Vlo(x,k)zac('i—ﬁlxx —00 < x < +00 B>0

ymin — —% <\/a2+,32—(x>.

One can easily convince oneself that completed by the ‘standabgms (2 cosx)—2
for the first potential and-(2 coshr)~? for the second one), the energy levels of both the
potentials are alsexactlyJWKB quantized. For the first potential, this fact follows as a result
that this potential is symmetric with respect to the real axis on the vertical linesRe /2,
whilst for the second potential it is due to the analogous symmetry which is valid on the lines
Imx = +7/2. These symmetries cause the coefficientsalculated on the paths shown in
figure 9 to cancel mutually in the corresponding quantization formulae (2.7).

4. Aperiodic exactly JWKB-quantized potentials

The periodic potential (3.2) which provides us with the exact JWKB-quantization
formulae (3.3) can also serve as the source of aperiodic exactly JWKB-quantized potentials.
The latter can be obtained from the former by a trivial change-of-variable procedure (x)
resulting in the potential transformations [23, 27] given by formula (2.9). The only necessary
requirement for a relevant change is to provide by it in the resulting potentials a free (i.e.
x-independent) term which can play the role of an energy parameter. The latter demand,
when applied to potential (3.2), permits the following two possibilitie§; el — x and

20, /2 — x. Adjusting properlyx, 8 andy in (3.2) we get in this way the radial parts of

the Coulomb potentidV,(x) in the first case and of the 3D homogeneous harmonic oscillator
potentialV3(x) in the second one.

The same method can be applied to the potentials whichatiexactly JWKB quantized
providing us with aperiodic potentials with the same property: i.e., the method does not allow
us to make any further estimations of the resulting potentials for their not being quantized
exactly by the corresponding JWKB formulae (which on their own would not be a simple
task).

As mentioned earlier, there is only one known aperiodic potential for which the simplest
vanishingmechanism of all the integrations in (2.5) works. This is the harmonic oscillator
potential: Vi1(x) = «?x?, unique among all the polynomial potentials for which the
corresponding JWKB formulae can be exact. This well known exactness can be easily proved
using the polynomial form of the potential [32]. The same result can be achieved using its
periodic representation by changing- sinh3. However, for this particular case, the periodic
representation does not show its advantage over the aperiodic one. Therefore, we shall not
consider the corresponding equivalent periodic formulation.

5. More general exactly JWKB-quantized potentials

The periodic potentials considered in the previous section are the simplest ones of all the
potentials quantized exactly by the JWKB formula. A generalization of their forms to the ones
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which still can keep the exactness of the corresponding JWKB formula can be done in the
following way.

Let V(x) mean any exactly JWKB-quantized periodic potential of the previous section.
Let V(x, p) mean a real parameter family of periodic (with respeck}Y@otentials with
the property that in the limip — 0, V(x, p) smoothly approache¥ (x). Then, forp
small enough, the Stokes graph corresponding ¢e, p) has to resemble the Stokes graph
corresponding td&/ (x). By such a resemblance we mean the following:

(1) To any singular point of a Stokes graphtofx) there corresponds a set of singular points
of a Stokes graph of (x, p) which reduce to the former point in the limit— 0. Each
member of such a set we shall call a singular point blob.

(2) To any turning point of the Stokes graphofx) there corresponds a set of turning points
of V(x, p) which reduces to the former point in the limit— 0. We shall call such a set
a turning point blob.

(3) There is one-to-one correspondence between the sectors of the two Stokes graphs such that
the sectors of a Stokes graphiofx, p) reduce smoothly to the corresponding sectors of a
Stokes graph oV (x) whenp — 0. In particular, the boundary conditions are formulated
for both the potentiald/ (x, p) and V(x) in sectors satisfying the correspondence just
described.

(4) Each set of Stokes lines which emerge from some singular (turning) point blob can be
mapped into a definite set of Stokes lines of a Stokes graph corresponding o
emerging from the point to which this singular (turning) point blob reduces in the limit
p — 0. Each of such sets can be divided into disjoint subsets (sheaves) of Stokes lines
each transforming smoothly when— 0 into one particular Stokes line emerging from
the limiting point.

(5) For anyp a set of symmetries df (x, p) and of its Stokes graph is the same asV@x)
and its Stokes graph.

Examples ofV (x, p) with properties $-5° and the Planck constahtas parametep can
be found in [1]. With these propertieg(x, p) provides us with the JWKB formula quantizing
exactly the energy levels of (x, p).

6. JWKB and SJWKB formula exactness and its relation with shape invariance
symmetry of potentials

In connection with the SUSY formulation of quantum mechanics, the SUSY JWKB
approximations have been suggested as different from the conventional ones which have
appeared to be exact [7, 8]. It has been also noticed, however, that their exactness has been
parallel to the exactness of the conventional ones [7, 8, 11].

So far, we have shown that the exactness of the conventional (i.e. not SUSY) JWKB
formulae was rather exceptional and was related to the simplest singularity and turning
point structures of the corresponding Stokes graphs. Since the SUSY quantum mechanics
quantization problems seem to be governed by the same rules, we can expect that the exactness
of the SUSY JWKB formulae have to follow in some way from the conventional ones. We
will show below that this is indeed the case.

Note, however, that there is also a common conviction that the SUSY JWKB exact
quantization conditions are not only independent of the conventional ones but also that their
exactness in some cases of potentials is in contrast with the approximate character in these cases
ofthe conventional IWKB formulae. As such, potentials are considered as shape invariant[29].
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It is shown below that also in these cases the parallelness of the exactness of both kinds of
formulae is still maintained.

Let us examine first the question of how the SUSY JWKB exact formulae follow from the
conventional ones.

6.1. Exactness of SUSY JWKB formulae following from conventional ones

Let us remind ourselves that if a potentla(x, ) can be put in its SUSY forn¥ (x, 1) =
V_(x, 1) = ¢%(x, 1) — ¢'(x, 1)/A + € (eg is the energy of the fundamental level W(x) if
SUSY is exact) then the conventional JWKB-quantization condition:

—k?g \/V(x,,\)+8(’;’2)”) _Edv=@m+Dri m=012 ... (6.1)
K

for the exact SUSY is to be substituted by [7, 8]

—A% \/qbz(x,k)—(E—eo) dx = 2wim m=0,1,2,.... (6.2)
K

If (6.1) is exact, then as previously mentioned, (6.2) is also very frequently. Let us
analyse how this can happen. The analysis shall be performed for both cases of broken and
unbroken superpotentiaswhich can represent (x, A). It will be shown that in both cases
condition (6.2), if it isexact remains the same, which is in contrast with its form representing
the lowest IWKB approximation only, in which case its rhs coincides rather with (6.1), whilst
the unbroken one coincides with (6.2) [7, 8, 26].

Letus now recapitulate all 11 potentiddg(x) and the correspondirig (x, E, A)-functions
we found in the previous section to be quantized exactly by the corresponding JWKB formulae.
They are

ql(-x’ Ev)") = Vl(-x) —F = aZeZX — 2,36"‘ — F

—00 <x < *00 p>0>E
1 + -1
Do B = Vo + iy~ E= -2+ 2B prapaosk
- 1 ﬁ+L
‘13(X,Ev)h)=V3(x)+m—E=a2x2+74)‘2—E x,,B,E>O
~ 1 oee"—ﬁ-ﬁ
xEN=Viir)-—————-E=——>+""> —F
qa( ) = Va(x) @ coshE)? costT 2
-0 < Xx <+ B>0 — B < 2a
G 1 a€ + B+ ot
a0 ) 5(x) (4x smhg)z sint? x
0<x <+oo Ba+B>0>20+8 >«
- 1 ﬁ+1TGl)L2 a+F§ﬂ
,Ev)\ZV + - —_ _ — _ _
9(x ) 5(x) (4rsinh$)2  (4x coshs)? sinhzg cosl?g
0<x <+ a,B>0
OI+L2
~ JE N =V + — 161 —E 6.3
qr(x ) 7(x) @, cost)? 03 (6.3)
T <X <T a>0
1 P + L
gs(x, E, 1) = Vg(x) + - 1612+/3 o2 _

+ — E =
(4rcos3)?  (4rsin)? cog3 s



378 P Milczarski and S Giller

Go(x, E, 1) = AN —E
go(x, E, 1) = Vo(x, 1) (2. coshn)?

1 .
o — 55 + B sinhx
= 42 —E —00 <X < +00 B >0
cosif x

O<x<m o,B8>0
vgnn — -3 (x/a2+,32—a>

5 1
Gro(x, E, 1) = Vio(x, A) + i E

1 .
o+ 25 + Bsinx T T
= —gxr Tpsrsty @0
X

Vi =1 (Va2 = F2+a)  Guix E.3) = Va(e ) - E =%~ E.

In order to represent the above potentials by their SUSY ones, one has, in principle, to
solve the non-uniform Riccati equations with their rhs given by the potentials listed. In general
such a task is rather difficult. Fortunately, for most of the above potentials, it is possible to
find these representations just by a trivial guess. To each of the potentials listed above one can
guess several (at least two) solutions, one of which corresponds to a superpotential realizing
the SUSY exactly whilst the remaining ones correspond to a broken supersymmetry. The latter
means that the supersymmetry breaking can be realized in many ways. The ways considered
below take into account only the possibility to define by a superpoteftia corresponding
ground state solutioy by the following representation:

Wo(x) = exp[ - A/ o) dy]

a<x<b

(6.4)

wherea, b (a < b) define boundaries of the corresponding quantization problem. Note that
Wy, as given by (6.4), satisfies the Sgtinger equation (2.1) foE = ¢ with the potentials
V(x, ) (= V_(x, 1)) listed above. There are four possibilities:

(1°) W, vanishes at both the boundariesh—the supersymmetry is exact adg is the
ground state wavefunction;

(2% and (3) W, vanishes at one of the boundaries ondydr b respectively)—the
supersymmetryasto be broken; and

(4°) W, blows up at both the boundaries—the supersymmetry seems essentially to be
broken but there is still a possibility that the ground stétehas been constructed by the
erroneous choice gf—there are infinitely many solutions satisfying the Sxfinger equation
considered witlE = ¢g but blowing up at both the boundaries even if the corresponding ground
state exists with this energy.

The latter possibility cannot happen in cas€safd ¥: blowing up of ¥y at one of
the boundaries only means that the ground state Witk ¢y cannot exist in these cases.
One can expect, therefore, that resulting relations between the energy spectra provided by the
quantization conditions defined by the allowed superpotenpiglsorresponding to each of
the potentiald/;, k = 1, ..., 11, listed earlier, and the original spectra of the latter potentials
can depend on the way the supersymmetry is broken by each partgular

A full list of the allowed superpotentialg, corresponding to each of the potenti#ls
k=1,...,11, with the above propertie$-14° (attaching to each of them the corresponding
category) are collected in appendix B.
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Let us note further that becausean vary we can take it sufficiently large to expand the
integrand in (6.2) into a series with respectto- /1. We get

[ = 1 I'ln—3] [¢ — 41" .
—Aﬁ ¢2—de—;kll_1mxﬁ—*dx=(2m+l)rrl (65)

(92— Ey'2

whereE = E — «.

Making a further change of variablexr — ¢ = ¢(x, A) in the integrands of the
series in (6.5) and putting’1(¢, A) = ¢’ (x(¢, L), A) — 8(x(¢p, 1), L)/A and Fa(p, L) =
@' (x(¢, 1), 1) we obtain

. 1 Tn—1] Fl (¢, )) d¢
—A 2 Edx — — % — =@n+l
ﬁ\/f . Z AL pir[—3] * K, (§2 — E)y'=7 Fa(p, ) (am+

nz

(6.6)

where the integrations under the sum in (6.6) go now intoghane. A possibility of
making these integrations now depends on analytic properties of the funétioas, A) on

the complexp-plane. The explicit forms of these functions for each of the potentials of (6.3)
are also given in appendix B. The following basic observations of the propertigs6h, 1)

are valid for the integrations in (6.6):

(1) In all the cases considered the functidng (¢, A) areholomorphicbeing defined on at
most two-sheeted-Riemann surfaceR, with square root branch points.

(2) There are as many different sheetsRyf as the number of different singularities of the
considered potentials mapped dyx, A, a) into different infinities of the corresponding
¢-Riemann surfaces.

(3) On each of these sheets the functidis(¢, A) diverge to infinity no faster thag? when
¢ — o0.

The above properties @f; »(¢, 1) can be easily understood noticing tidk, 1, a) and its
derivative¢’(x, A, a), as a function ok, are meromorphic at the same points as the potentials
defining them. (Note, however, that as such we also consider points located at infinities, so that,
for example, & or x" are considered to be singular for—~ co.) Therefore, these singularities
are all mapped by the transformation— ¢ = ¢(x, 1) into the corresponding infinities of
the ¢-Riemann surface sheets. If these mappings differ in some way then the corresponding
infinities have to be approached on different sheetR pf

On the other hand, the singular points@f2(¢, ») can appear only at the points where
¢'(x, A, a) vanishes. These are exactly the square root branch poirfig ¢, 1) on their
correspondingy-Riemann surfaces since generic zerog'cf, A, a) are simple.

The second of the above properties follows as a result of the specific singularities the
considered potentials have on thglane. Namely, one can easily check that by taking into
account all types of singularities of these potentials we have

(i) For V_(x, ») diverging as &for x — oo, Fy » diverge linearly withp when¢ — oo on
a given sheet.
(i) For V_(x, 1) diverging asc? for x — oo, F1» approach constant values whgn- oo.
(iii) For x close to a second-order patg of V_(x, 1), Fy, diverge to infinity asp? when
¢ — oo on a sheet, the infinity of which is a map of the corresponding pgle

Next we can still observe the following crucial properties of the transformatien ¢ =
¢ (x, 1) and of the quantization conditions (6.1) for all the exactly JWKB-quantized potentials
considered above:
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(4) In the cases when there are two pairs of turning points in the corresponding basic
period strip which can be used equivalently to quantize the energy levels by (6.1) then
x — ¢ = ¢ (x, A) maps these pairs and the corresponding pieces of the basic period strip
into corresponding sheets of theRiemann surfaces in such a way that conditions (6.1)
can be written independently and equivalently on each sheet.

Now taking into account the above properties (1)—(4) we can rewrite the contour integrals
of the series in (6.6) as the following sum over the contours distributed on the different sheets:

—/\f Vo2 —Edv =) = F[”_f]
n>l nlr[ ]
1 ?g F1 (¢, 1) do
r=1,2

“2 Lot @2 — Byl B )

=@2m+Dn (6.7)

wherekK, 4, r = 1, 2 surround the corresponding pairs of turning points.

SinceFy 2(¢, A) are holomorphic outside the contoufs,, r = 1, 2 we can deform these
contours to the ones which partly surround the cuts on each sheet and partly coincide with the
circles of sufficiently large radii completing these contours on each sheet. Thenthe integrations
along the cuts cancel pairwise and we are left only with the integrations along the circles each
taken on different sheets.

Next expanding the denominators on these circles we get

_)L¢\/¢2 de— 1 Zl[l’i[ 1]]

F[k+n—%]?§ Fi@.n) dp |
2 =(@2m+Dni. (6.8
X r21:2k2>:0 kIT[n — % ¢, $7ET Fy(¢h, ) (2m + Dyri (6.8)

A final result of the integrations in (6.8) depends now of course on the particular forms of
the expansions afy (¢, A) into their corresponding Laurent series.

It can be easily checked, however, that the series in the lhs of (6.8) becomes energy
independent only in the case when the Laurent series expansidiis dbth abbreviate at a
power of¢ no higher than second. This is simply the case of the potentials considered.

Suppose, therefore, that on thth sheetFi 2(¢, 1) = ;5 F{) 0097 +ay(0) +

by (M) + ¢ (M)$2. Then from (6.8) we get

| (r)

. . C

_)L% \/(fTEd_X + — 7T|8b(r)086(r)0 +7T|86<”0 277;| (r) _ % _
r 12

= (2m + Dymi. (6.9)

As can be seen from (6.9), the contributions of the constant and the linear divergences of
F12(¢, A) attheg-infinities are completely independent of particularities of these divergences.
One can easily check, however, that this is also true for the contributions of the corresponding
coeﬁicientSC(lf)z(A): i.e., these contributions are also independent of both the potential
considered and the coefficients themselves, depending instead entirely on the type of the
potential singularities (which for the case considered correspond to the second-order poles of
the potentials): namely, these contributions a@lieaysthe same giving the valuei for each
circle integration independent of whether the supersymmetry is exact or broken [32].
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Therefore, for the 11 potentials (6.3) we have proved in this way the following equality
between the JWKB integral and its SUSY form:

?{ \/¢2(x A) — —¢>( r) + Mx k) — (E — €o) dx —% V$2(x, 2) — (E — €) dx —Ti
(6.10)

Of course, we could perform the above calculations in the reverse direction: i.e. from
SUSY to the conventional JWKB integral, which can formally be realized in formula (6.10)
by moving the termri from the rhs to the Ihs of the formula.

In a condensed form, the method of performing the above calculations has been
demonstrated for the potentid$(x) in appendix C.

The final conclusion is very important and, furthermore, allows for the following
generalization of (6.10):

?{\/¢2(x A) x ¢>( )»)+6(x Y (E—éo)dx—yg Vé2(x, 1) — (E—éo)dle:—
(6.11)

Also, the entire discussion above allows us to formulate a slightly more general theorem
which includes as its particular cases the 11 potentials listed by (6.3). Namely, we have the
following theorem.

Theorem 1. Let the following assumptions be satisfied for the poteritiét, A, a) and its
superpotential partneg (x, A, a):

(@) V(x, A,a) and¢(x, 1, a) are meromorphic on the-plane.

(b) The functiong1 2(¢, A, a) corresponding to the superpotentiglare holomorphicon a
n-sheeted-Riemann surfacé, with the square root branch points.

(c) Atthe infinity of each sheet the functiafis;(¢, A, a) diverge with an integer power gf
but no faster than the second.

(d) There are pairs of turning points (among which there is a pair of physical ones) such that
the JWKB (SJWKB) quantization integral can be written alternatively and equivalently
around any of the pairs and on each sheeRyfthere is an image aéxactly oneof these
pairs of turning points.

Then relation (6.11) holds.

The proof of this theorem differs from the earlier proof of formula (6.11) only by the
assumed number of sheets of the Riemann suticehich is finite but not limited to two.

Let us finish this section by comparing the energy levels obtained by formula (6.1) with
those obtained by (6.2) using in the latter the respective superpotentials of tagealdove.
We can conclude that the levels given by (6.1) are reproduced by (6.2):

(i) Exactly in case 4 of the superpotentials.
(ii) By being shifted upby half a unit used to enumerate the levels in caseari  of the
superpotentials.
(iii) By being shifted upby awholeunit used to enumerate the levels in castar®l ¥ of the
superpotentials.

It is clear that the above differences follow as a result of the different enumeration of
energy levels in the compared speciraif (6.1) starts from zero whilst in (6.2) from unity),
as well as due to different choices of the energy lewghwith respect to which the levels of
the spectra are measured in all of the caseg’l
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6.2. Exactness of SUSY and conventional JWKB quantizations in the case of shape invariant
potentials

In the previous section we have shown that for the class of potentials given by (6.3) for which
the JWKB formulae were exact the corresponding SUSY partner formulae were exact also.

The exactness of the JWKB formulae obtained by detailed analysis of the potentials and
the corresponding Stokes graphs was dependent on particular symmetries of the latter and on
the singularity structure of the potentials.

The exactness of the SIWKB formulae followed as a direct result of analytic (or
rather meromorphic) properties of the potentials mapped into the Riemann surface of
the superpotentials themselves, i@ other additional properties of the potentials and
superpotentials have been necessary for this simultaneous exactness of formulae (6.1), (6.2).

However, the exactness of the SIWKB quantization formulae for the same potentials (6.3)
has been argued to also follow as a result of their common property of being shape
invariant [28-31]. This means that,(x,A) = Vi _(x,A),k = 1,...,11, depends
additionally on some parameterso that for its SUSY partnéf; .(x, A, a) we have [29]

Vi+(x, A, a1) = Vi _(x, A, a) + Ry(ay)
k=1,...,11

with a; = fr(a).

It appears that all the potentials considered so far and being exactly JWKB (SJWKB)
guantized belong to the class of the shape invariant potentials [28]. In their cas¢(@adch
simply a translation of the parameter

The exactness of (6.2) following from (6.12) has been suggested byeDalt{30] and
established by Barclay and Maxwell [31] at the perturbative level. It was argued also (see
Cooperet aland [28], for example) that the exactness of SIWKB formulae (6.2) which follows
from (6.12) takes place even when the conventional one fails.

As we have seen earlier, the latter claim, however, cannot be true in the case of the 11
potentials (6.3) and in the case of potentials satisfying the conditions of theorem 1.

Nevertheless, itis still interesting how the shape invariance symmetry expressed by (6.12)
is related to the singularity structures of the potentials (6.3) which guaranteed the exactness of
their corresponding JWKB and SJWKB formulae.

The following theorem establishes this relation.

(6.12)

Theorem 2. Let the following assumptions be satisfied for the potential, A, a):

(1) The potentiaV (x, A, a) is shape invariant.
(2) The potentiaV (x, 1, a) satisfies all the conditions of theorem 1.

Then the conventional and SJWKB formulaeWgkx, 1) are exact.

Proof. The theorem follows from the repetitions of the reasonings which lead us to theorem 1
and from the following sequence of equalities:

f (@) — E)? dx = f (#%(a1) — E + R(ay))? dx
K K
+ }é (f(F{ (@), E — R(@y) — f(F}(a), E))dy = ---

= f (@%(an) — E + R(ay) +--- + R(ay))? dx
K
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3 b S @) E = Riay == Re@,)
p=1

—f(F{(ap-1), E— R(a) — - R(a,-1))dx ag=a R(a) =0 (6.13)
where f(FZ, E) is defined by

f [¢2<a> + ig@ 2 - E} dr — f (¢%(a) — E)bdr +y§ F(FE@). Byds  (6.14)
K )" )"2 K K

with Fi* = £¢' +§/A.

From assumption (2) it follows that every one of the contour integrals in the sum of the
rhs of (6.13) being rewritten to be taken on some she&afan be taken osachsheet ofR,
in the following way:

= = 1Y jg + 590
?if(F (x,), E)dx = ; . f(FE@, a), E)F2(¢) (6.15)
whereF,(¢) = ¢'(x(9)).

It follows further from assumption (2) that every contdki ., r = 1,...,n, can be
deformed on a sheet which is defined onto a circle of sufficiently large radius and to pieces of
this contour which cancel mutually with analogous pieces of other contours. The net result
of these deformations are the integrations performed on every sheet along the circles with
sufficiently large radii. On the circles the integratéddivided by F») are holomorphic and
diverging to infinity no faster than the second powergof This guarantees that all these
integrals can be calculated in a way similar to that which we used earlier in proving theorem 1.
In particular, independent of the type of singularityofx, X, a) each infinity contributes the
same to the sum (6.15): namebix/A for the Fli cases, respectively. Therefore, the total
value of the integral in the Ihs of (6.15) is alsox /), accordingly. Finally, formula (6.13)
becomes

f (¢%(a) — E)2 dx = f (*(an) — E + R(ay) +--- + R(ay))? dx — 27im
) apg=a ) R(ag) = 0.

(6.16)

Substituting now in (6.16F = R(a1) + - - - + R(a,) = E,, We get the result (6.2) where
for the broken supersymmetry the integebegins instead from = 1.

The corresponding conventional JWKB exactness follows immediately from
equalities (6.11) and (6.14). Namely, we get

1

f |:¢2(a) + %qﬁ’(a) + % —R(@ay) — -+ — R(am)]2 dx = 2m F Dmi. (6.17)
K
O

The following remark is in order.

If F12(¢) diverged to infinity faster thag, then every integral of(FfZ) in (6.13) would
contain anE-dependent infinite series not reducing, of course, to simple vaties i.e.,
relation (6.16) as well as (6.17) could no longer be valid.

However, it is shown in appendix D thanyinteger power of the divergency & »(¢) to
infinity is allowed by the shape invariance condition (6.12). Therefore, the bound on this power
introduced to theorem 2 by its assumption (2), is essential. It is still, however, worth noting
that the bound in the last assumption can be substituted equivalently by another property of the
superpotentiap (x, A, a) if the latter is shape invariant (i.e. it satisfies (6.12) if this condition
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is expressed in terms of this superpotential). The discussed assumption is equivalent to the
demand that thehifted superpotentialth; = ¢(x, A, a1), a1 = f(a), when expressed as

a function ofp = ¢(x, 1, a) (i.e. ¢p1 = ¢(¢, A, a) diverges linearly with the latter when

¢ — oo, whilst the corresponding proportionality coefficient approaches unity whenco.

All the 11 potentials (6.3) satisfy this demand. It is shown in appendix D that the shape
invariant conditon (6.12) can be then fulfiled onlyAf(¢, A, a) does not diverge faster than

¢°.

7. Discussion and conclusions

In this paper we have shown that the early success of the exact IWKB and SJWKB formulae
was related to the simple singularity and turning point structures of potentials. In particular,
this was facilitated by having no more than two (occasionally four) turning points and no more
than one second-order pole in the basic period strip. In the opposite case, an unavoidable
proliferation of additional sectors in the basic period strip prevents the periodicity properties
of the corresponding quantization conditions (2.7) to be used to reduce the conditions to the
pure JWKB ones. The possible relaxation of these conditions has been described in section 5
and the corresponding examples were given in an earlier paper by one of us [1].

The above simplicity conditions reduced effectively a number of exactly JWKB-quantized
potentials to only 11All of them have long been known. However, due to the investigations
above they have been given the status of being rather exceptional.

Furthermore, we have shown that the sufficient condition for a potential to be exactly
JWKB(SJWKB)-quantized is the shape invariance of the latter supported by the holomorphicity
of the functionsFy »(x, E, 1) on the Riemann surface of the corresponding superpotential and
their proper asymptotic behaviour on the surface. If the latter properties are satisfied the
energy levels are quantized exactly and simultaneously by the JWKB formulae of both types:
conventional and SUSY. The two theorems of section 6 give necessary and sufficient conditions
for this to happen. Both the theorems show the close and direct relation between the exactness
of the JWKB and SJWKB formulae which follows on the one hand from the shape invariance
of the potentials and on the other hand from the singularity structures of the latter.orette
¢-planes. In fact, we can conclude that the results of section 3 are nothing but the solutions to
the shape invariance symmetry condition (6.12) expressed in terms of the allowed numbers of
turning points and poles in the basic period strips.

We must note also that the results obtained by Inoredd[26] for the form of the SUSY
JWKB formulae for broken SUSY potentials do not contradict ours which always choose the
form of Comtetet al [7] since the latter concern their exact, unapproximated forms which
are the subject of Inomatt al. However, despite having the same form, formula (6.2) gives
differentresults for energy levels depending on whether the supersymmetry is exact or broken:
in the latter case reproducing effectively the result of Inoneti.
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Appendix A

Here we shall construct the Weierstrass product representation for the following holomorphic
2mri-periodic function:

k
q(x, E. 1) =) qu(E, 1) (A1)

with £ > [ andeven k-l and having only simple zeros.

Let y1, ..., yk be the (simple) zeros of the polynomigllogy, E, »)/y', thenx,, , =
logy,+2rin,p=1,...,k—=1,n=0,%£1, £2, ..., exhaust all zeros af(x, E, ). We shall
show thaty (x, E, A) can be represented by
g(x, E,») = Ce#*x [1— i] . [1— a ]

X2,0 Xk—1,0

x l_[ l_[ [ logy, + Zmn] [1_ Iogy,,x— 2nini| (A2)

p=1n>1

whereC = q(x, E, 1)/x|x— Or C = ¢(0, E, A) if x = 0 is not aroot ofy(x, E, 1).

The above formula follows from the observation tlietc, E, 1) = g (x, E, 1) exp[(—k/2
— 1/2)x] is also Zri-periodic and holomorphic with the same rootsgds, E, 1) and from
another observation that the convergence-producing exponentials in the rhs of (A.2) can be
shifted to the front of the product if the latter is taken in the form shown above. Therefore, the
Weierstrass product representationfx, £, 1) can be given in the following form:

Q(x,E,x)=Cewx[1_i]..[1_ x }

X2,0 Xk—1,0

% l_[ [ [ logy, + Zmn] [1_ Iogypx— 27tin:| (A-3)

p=1n>1

whereq is an integer by periodicity 0®. In generala should depend analytically on the
coefficientsy, of (A.1) but being an integer it iseonstantfunction of the latter. Therefore, to
establish its value we can choose some appropriate point in the spgacenamely, the one
for which Q(x, E, 1), as defined by (A.3), becomes an even functiom ohder the reflection
x — —x. To achieve this goal it is enough to contingeto the point wherey, = gi+1—n,
n=1,1+1...,(k+1)/2. Then, the operatian - —x does not change in (A.3) the product
itself (the distribution of roots are then invariant under the operation) but chafifjéste
e **. Thereforep = 0.

As an example, considef(x, E, 1) given by (3.2) for which its distribution of roots is
shown in figure 2. We have for it

ae? —2Be +y = (@ — 2B +y)€" [1_)61] [1_1]

+ x_

x]‘[]‘[[l— +2ﬂ|n][1—m]. (A.4)

p=£tn>1

We want to calculate with the help of (A.4) a change of phase@f E, ») when
transporting it from pointg of the line Imx = 7 to the pointxg — 2xi of the line Imx = —x.
We note that as follows from (A.4), the roots @fx, E, 1) lying at large distances from the
points considered have almost no contribution to the valuegofE, A) in the considered
strip (their product in (A.4) is close to 1). Therefore, we can take a sufficiently large but finite
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number of roots around the considered points to perform the calculations needed (eventually
we can take the limit of the infinite number of roots).

Starting from pointyp we can considet pairs of roots lying above the line Im= = (n
is large) and: pairs of roots lying below the line. The argumentsxgf— x; we take to be
positive forx; lying below the line Imx = 7 and negative in the opposite case. It is clear
that the net result of summing the corresponding arguments of the product in (A.4) is zero.
There is, however, still a non-zero contribution to the argument(ef, £, ) coming from
the factor & of (A.4). It amounts, of course, te and this is the total argument gfxo, E, A).

At the pointsxg — i our calculations are similar. Keeping thkameset of roots as chosen
previously we see that to the total phase of the produet at i contribute only the two
most distant pairs of roots lyingbovethe line Imx = &, so according to our convention
this contribution amounts to(47/2) = —2x (in the limit of the root number going to
infinity). Together with the argumentr provided by the factor‘ewe get the argument of
q(xo—mi, E, 1) to be equal te-37. Therefore, the total change of the argument@f, E, 1)
between the lines considered is equal-tr.

Appendix B

We shall collect here all the superpotentigl€orresponding to the potentidls, k = 1, .. ., 8:

i.e. to the first eight listed in section 4 and to the last two discussed in the latter part of that
section (formula (3.18)). We shall also collect all their broken partners with the corresponding
method of symmetry breaking described by poirfts® in section 4. The corresponding
functionsFi(¢) and F»(¢) are also given together with the coefficientsby, ¢, k = 1, 2, of

their asymptotic expansions wheén— oo.

10
e Pt
d1(x, 1) = |ale’ a t o
1
mm=&mh@¢%+ﬁ
_ (B 1YV
w1 e=-(g-z)-
40
_ g1
d1(x, 1) = —|ale’ + ol + >
1
F1(¢1) = F2(¢1) = 1 — |’:L| + >
_ (B 1Y
b1=1 60__<m+5>'
10

2+1+1
2)x |2/ + 1) +1
ar

F —A221+1+1@i_—ﬂ+—1'i)—2
1(2) = 222+ 1]+ D= TR

P2(x, 1) =
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ak 2
(P2 — +i1)

Fa() = 2
2(¢2) 21+ 1
2241+ 22
Q=A———— o= ——
T2+ 1+ 12 2T A1+l
o ()?
T (2112
I(+1)
= XZ >
40
o o l2ru-1 A
2= T o 20+1—1
(g2 + #)2
Fi(dp) = —A(220 + 1| — 1)—— 2717
102 = —A22+ 1 = D ot
(2 + #)2 2120+1 -1
Fa(gpp) = — 2% — 120717 e i Bl
2(¢2) 20 +1 -1 “ (20 +1 — 1)2
o ()
0T T2+ 1 - 1)2
I(+1)
= )\‘2 >
10
b 1) — Jal 120 +1+1
X, A) =lolx — —————
s 2xx

Cy =

387

22X
20 +1 -1

Fi(¢s) = 12|20 + 1| + 1) [zbé + 2l ——

ol
2120+ 1] +2

Fa(¢3) = A [¢§ + 2o

o L 22+1+1

A s ot Bl
(12 +1] +1)2

c1(2) =c2(2) =0

loe] I1+1
=(20+1+2)— =
=(2+U+2>  p=——3

A
2 T+ +1

|21+ 1/ +1

> 0.

20: we get this case from®lsubstituting2/ + 1| by —|2/ + 1];
3% we get this case fromPIby the substitutiono| — —|a;

121 + 1 +1T 3+ (¢3 + 2la| 2L 5

|20+ 1) + 172 ¢a+ ($2 + 2lor| 22113
2120 + 1] + 1)2

4% we get this case fromPlsubstituting 2/ + 1| by —|2/ + 1] and|«| by —|«/|.

10
# 21 +1] — 1 o Ao
=

tanh— + ———
Py 2 2+l -1

Fi(¢s) = —0(212+ 1] - 1) < 6.

21 +1 —1

o 2
¢m—@%j) L2241
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4 N2 .
F2(¢4) - _o (¢4 ‘2[+1|_1) + |2[ + 1| 1

2 +1—1 81
220 +1 —1 2,
AT M2 — 12 2T T ary -1
27 +1] — 1 2 TP
EOZ_[ 2% _|21+1|—1]
1(+1
+8 = EZA)2)>0'

4% we get this case from’by the substitution2/ + 1| — —|2/ + 1].
10

s = |21+1|+1cothx Ao
>= 4. 2 j2+1+1
2
s+ (gregs1)’ 220+ 1 +1
Fi(gs) = A(2121 + 1] + 1 -
1(ps) = 1(2120 + 1) )( ESTES o
(f5+ mig)? (2 +1]+1
Fa(s) = +21 -
2(¢s) 20 +1+1 8
2241+ 22
Cc1 = _— CH= ——
T2+ 1+ 12 2T+ +1
o o — ol o _[l2rys1, 2 2
1 =% 0 21 2+ 1+ 1
+/8=1(1+1)
(21)?

4% we get this case from’by the substitution2/ + 1| — —|2/ + 1].
10

20+1 -1 x [2'+1+1
g = ———— tanh- — ————— coth=
45, 2 45, 2
1
A Q20 +1 — D2 + 1 + Dz
Fi(ge) = —= (212 +1] — 1) | p2 +
1(ge) = —5 (22 + 1~ 1) [% OaL }
b6+ [p2 + (2\2/+1|—(21/)\§|221’+1|+1)]%
(120 + 1] — 1)2
1
Y (221 + 1] — D2 + 1 + 1) ]2
—ZQ 1 - 1) | ¢+
S(@2'+1 - 1) [abe oy
.¢6 _ [d)g + (|21+1|7(12))f)\§l’+1\+1)]%
(12" + 1]+ 1)?
Fatge) — —i [g2+ (2FU= D2 +1+D) g+ [pF + (2HDr D 3
e ¢ )2 (2+1 - 1)
i [grs (2FU-D2+1+D o — [ + Dy
° (21)? (12 +1]+1)2
o, 221 @ . 22+1 -1
D

(2r+1+12 T T a1 -12
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RO RO
2 T+ +1 2 |20+1 —1
. (q-1-172 1(1+1) . P r'a+1
= —-—- o = = ——
° (202 (21)2 (21)?

20 +1 — |20/ +1] > 2.

we get this case fromPtaking!, I’, satisfying|2/ + 1| — |2/’ + 1| < 2 or substituting2/ + 1|
by —|2/ +1];

: we get this case from’Isubstituting|2/’ + 1| by —|2/’ + 1| and next taking, ', satisfying

[2I'+ 1 1|20 +1] > 2;

we get this case fromIsubstituting 2/’ + 1| by —|2/’ + 1] and next taking, /', satisfying
|20 +1) £ |2 +1] < 2.
b = |2 +1] — 1t X
T I 2
®? 2121 +1] -1
F =—-A2+1 -1 —
1(¢7) 2 | )(|21 T 1) 161
®? 2+1]—1
F: = -2\ —
2(¢7) 2/+1 —1 8
L 22+1 -1 B 2).
AT M =12 2T v -1
<|21 +1] — 1>2
e=—7+-+—7
4\
I(I+1)
= >
(21)2

: we get this case fromPIsubstituting2/ + 1| by —|2/ + 1].

b 2+Y+1 x (27U *L x
LYY 2 45 2

Fi(¢g) = %(2|21 +1]+1) [(pg + (2 +1+1(20 + 1 + 1)]2

(4r)2
¢8 + [¢§ + (|21’+1|JE‘11;\()|221+1|+1)]%
- = T+ 1+
(120 + 1] + 1)2 2(2|21 U+1
/ 3
2, (2" + 1+ D2 +1]+1)
x [% 4)2
do — [9F + PG (e — 2 4 1)
(12" + 1] + 1)? 6L (2 + 1+ (|2 +1] + 1)
Fottey = |62+ (120 + 1] — 1)(|12 + 1| + 1) |? s+ [¢pF + (2D 3
2\ve 8 (40)2 20 +1/+1
2 [g2e @ U102+ 4D b g — [9f + 2D 3
8 (42.)? (20’ + 1] — 1)2
W . 22+1+1 @ 22 +1+1

I T R (P T T
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2 T a+1+1 2 |20 +1)+1

1
€0 (l(l+1)+l’(l’+1)+§(|21+1|+|21’+1|+2)

~ @2
+%<|2z A D2+ 1)+ 1))

_l(l+1) _l/(l/+l)

~ oz T T @)2

2°: we get this case from®1substituting 2/ + 1| by —|2/ + 1|;
3% we get this case fromP1substituting 2/’ + 1| by —|2/' + 1];
49 we get this case fromP1substituting2/ + 1| by —|2/ + 1| as well ag2/’ + 1| by —|2/’ + 1|.

10

b
¢g = atanx + ——

COSx
— _ 24,2 _ 12
Fildo) = (b6 — av/o?+aZ = 1?)
[a/ (bqb —ay/¢?+a? —bz) —-b <a¢ — by % +a? — b2>]
- = _ 24,42 _ 12
F2(¢9)_(a2—b2)2 (bd) avo?+a b)
[a (b(b —ay/¢?+a? —h2> —b (ad) — by @2 +a?— b2>]
c(l): a/+b C(Z): Cl/—b
L7 (a+b)? L7 (@-b)2
1 1
@ _ @ _
2 a+b 2 a—>b
(1+1 Ui +1
at+f = 2 >0 a—pB= 2 >0
_|21+1|+|21’+1|+1 ;L 1
“= 4% 2 T
b |21 +1] — |21’ + 1]
B 4)

2°: we get this case substituting if,12/ + 1| by —|2/ + 1];

3% we get this case substituting if,12/' + 1| by —|2/ + 1];

4% we get this case substituting if,12/ + 1| by —|2/ + 1] and|2/’ + 1| by — |2/’ + 1.
10

b
¢10 = atanhx +
coshx

1 (92, — a®)? + 4r(¢p3, — a?) <a(¢fo —a?—b% — ib¢10\/¢m>
Fi(¢10) = —
4) (b2 — a?)(¢2, — a?) + 2a2b? + 2iab¢1o\/¢m
2 2 a(¢fo —a® = b?) — ib(f’mW
Fa(¢10) = (910 — @)
0 0E a0 Bty T
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@ 1 1 1 @ 1 1 1
. =- — — —— - . =- — = :
a—ib 4\ (a—ib)? a+ib  4A (a +ib)?
1 1
o _ @ _ _
2 = a—ib “ a+ib
I+1 20+1+1
a=b2—( ) B =b|(|2l +1] +2) a=¥>0

22 2A

bh>0 I(1+1) > 0.

4% we get this case substituting if,12/ + 1| by —|2 + 1| or allowing! to vary in L in the
segment-1 < I < 0 (the allowed is then negative in both cases).
10

$11(x, 1) = lafx $1(x, ) = o]

Fi(¢, 1) = Fa(¢, A) = o

o
€= —.
A

4°%: we get this case substituting ifl,1o| by —|e|.

Appendix C

We demonstrate here the particularities of obtaining formula (6.10) for the poteésitiall) =
Vo (x, A).

There are three possibilities of breaking spontaneously the supersymmetry for this case.
We shall choose only one of them corresponding to the first of the three cases listed in
appendix B.

Consider, therefore, relation (6.14) using the superpotenjigls A) given above. First
consider case’Lof the exact supersymmetry. The corresponding Riemann suRgaces
depictedinfigure 10. Thisis atwo-sheeted surface with the branch poiitsaiti (az—bz)%.

The latter are the unigue singularities of the integrand of the following integral:

1 ~ ~ | dog
2_ZF —E—\/¢p2—E| —— (o3}
%1‘% |:\/¢g 7 1(¢h9) ®q i|F2(¢9) (C.1)

(since the roots of;, at¢g = tia are also the roots afy).

Ry, Is, clearly, a map of the basic period strpr < x < & of thex-plane (see figure 9),
so that the four turning points @b _(x, A, E) from this strip are mapped pairwise iniy,:
the two from segmentr /2, /2) into sheetd) of figure 10 and the other two into the second
one. Itis also easy to note that in quantization formulae (6.1) and (6.2) the cahioigure 9
can be substituted by contoir’, surrounding the next two turning points, the latter contour
being related to the joined symmetry operations:> x + 7 andx — —x. The contours are
mapped intRy, asK1 4 andK, 4, respectively, the latter surrounding the respective pairs of the
turning points pictured oy, (see figure 10). Therefore, for the quantization formulae (6.1)
and (6.2) we can write

1, 8 - A 1, 6§ -
o Bare il of i e b
. A
=—-ArQp JPp?—Ed ——[?{ +% }
ﬁﬁ ¢9 * 2 K14 K24
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x Npé ~ ZFige) — i - \/qsé?} Fff;g)
Y i 1 Joz— Edx - %
A [ T
(C.2)

whereK ., 4 and K, 4 are the contours obtained by obvious deformations of the contours
K14 andK; 4, which contain all the singularities @h >(¢9). Making use of the explicit forms
of F12(¢9) as given in section 4, we can calculate the last integral in (C.2) obtaining for it the
value +ir. Together with (6.2) this gives result (6.1).

Consider now the broken castdf the superpotentigly. The corresponding basic period
strip ofgg — (x, A, E) and the quantization contouks andK transform intoRy,, as is shown
in figure 11. Once again, we can write the sequence analogous to (C.2) by deforming the
contoursKy 4 and K, , of figure 11 intoK , 4 and K¢, respectively, to perform the final
integration obtainingagain +iz and consequently the exact formula (6.1). Of course, the
starting value ofn can now be zero.

Appendix D

We shall show here that the shape invariance condition (6.12) does not prevent, in some obvious
way, F1 2(¢) to diverge with any power ap wheng — oo. But if we limit the corresponding
divergence of the ‘shifted’ superpotentigl = ¢ (x, A, a1) a1 = f(a) to the linear one then
the divergence of,»(¢) cannot be faster thap?.

To this end, let us rewrite (6.12) in terms of superpotentials. We get

1 1
O'(x 0 @) + 240k @) = 97(x, b ar) — 29/ (6 ha) +R(@) gy
a; = f(a).

Equation (D.1) is satisfied whenis taken to be the same on both the sides.
Puttinge = ¢ (x, A, @) and¢g1 = ¢ (x, A, a1) and inverting both the latter identities with
respect toc, we can write

x(¢, A, a) = x(¢1, 2, a1). (D.2)
Next, taking into account that in (D.2) = f(a) we can solve the latter with respectgpto
get

$1 =G, A, a) = p(x(¢, 1, a), %, f(a)). (D.3)
Introducing further the latter function, as well as the functioxy, a) (=¢’(x(¢, a), a))
to (D.1), we obtain

1 ~ 1.
8+~ Fa(,0,0) = $%($, 1, @) = 29, 1, ) Fal¢, 1, @) + R(ar). (DA)

Consider now (D.4) on some sheet of th&Riemann surface upon which this equation is
defined. Then assuming that f¢rlarge enough all the terms in (D.4) behave holomorphicly
we can easily see that (D.4) is satisfied asymptoticallysfes oo if ¢1 grows linearly with
¢, whilst F>(¢, A, a) can grow withany finite power ofep.

However, if this growth is faster thap? then (D.4) can be satisfied onlygdf ~ —¢ with
¢ — oo. Onthe other hand, b ~ (1 + )¢ in the last limit then from (D.4) it follows easily
that in such a cas:(¢, A, a) ~ cop?.
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