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Abstract. A mechanism for the JWKB formulae in one-dimensional quantum mechanics to
quantize energy levels exactly is discussed. This mechanism is most easily applied when considered
potentials are represented (by a suitable change of variable) as periodic ones. To be successful, the
mechanism demands potentials with no more than one second-order pole and no more than two
(occasionally four) turning points in the basic period strips. It then selects 11 potentials which have
been known in the literature for a long time. It is also shown that the exactness of the supersymmetric
(SUSY) JWKB formulae for these 11 potentials follows directly from the corresponding exactness
of the conventional ones being a consequence of the singularity structures of the potentials. A
relation of these singularity structures to the shape invariance symmetry of the quantized potentials
is shown to guarantee the conventional and SUSY JWKB formulae to be exact simultaneously.
The relevant two non-perturbative theorems describing these facts are formulated and proved.

1. Introduction

It has long been known that for some number of potentials in one-dimensional (1D) quantization
problems (and also in the cases ofn-dimensional problems which can be reduced to 1D
ones) their corresponding JWKB-quantization formulae for energy levels (or some of their
generalizations [1] or modifications [6]) are exact [2–5,11], whilst in most solvable cases (i.e.
the ones for which their corresponding energy spectrum is known by other means) the JWKB
quantization appears to be only approximate.

It was also noticed that the same solvable potentials which are quantized accurately by
JWKB formulae are also quantized exactly when the supersymmetric (SUSY) modification of
the JWKB method is used [7–9].

A class of shape invariant potentials are also known to provide examples of theexactSUSY
JWKB (SJWKB) quantization formulae [28–31]. But, in general, the SJWKB formulae do
not provide accurate quantization conditions in most cases of solvable potentials [10,35,36].

Therefore, the following questions still need to be answered:

(1) When can the JWKB formulae, both conventional and SUSY, be exact?
(2) Why are the conventional and SJWKB formulae exact simultaneously?
(3) Are there some (possibly simple) criteria which allow us to judge if a given JWKB

(SJWKB) formula is exact?
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Before reporting our answers to the above questions let us briefly summarize the basic
facts related directly to these questions and established by different authors.

First, Rosenzweig and Krieger [4] in the case of conventional JWKB formulae and
Crescimanno [11] in the case of SUSY formulae have constructed the proofs of their exactness
for some potentials based on the Fröman and Fr̈oman [2] approach to 1D semiclassics.
However, from our point of view, the correctness of these proofs seems to be doubtful because
of erroneous calculations of necessary phases when functions have infinitely many roots and
poles.

Secondly, Raghunathanet al [33] have shown that some SJWKB formulae are exact at
the semiclassical level, whilst Duttet al [30] have proved this for a class of shape invariant
potentials.

Finally, Barclay and Maxwell [31] have used the result of Duttet al [30] to suggest the
form of superpotentials satisfying the shape invariance symmetry condition whilst Barclay
et al [34] have shown that for another class of shape invariant potentials discovered by this
group [35,36] the corresponding SJWKB formulae are not exact.

The following results established in this paper form our answers to the questions posed
above. In their formulation we have taken into account the fact that each 1D quantization
problem canalwaysbe transformed into its periodic form (see section 2).

(a) A unifying condition for potentials to be quantized exactly by the JWKB (SJWKB)
formulae is the shape invariance of these potentials accompanied by some particular
analytical properties of the latter when considered as functions ofcomplexsuperpotentials.
If these properties are confirmed then both types of JWKB quantizations are exact
simultaneously.

(b) The properties of the potentials mentioned in (a) are in direct relation to analytic properties
and symmetries of the potentials considered on the complex plane of thepositionvariable.
The potentials to be provided with the properties mentioned above should have no more
than two (occasionally four) turning points and no more than one pole (of the order of no
higher than two) in their basic period strip.

The properties of (b) can be established independently of (a) and follow from a basic
mechanism causing the JWKB formulae to be exact. An effective action of this mechanism
depends on symmetry properties of the periodic Stokes graphs corresponding to the considered
potentials.

Our analysis which made use of the mechanism can be therefore considered asa method
of searching for solutions to the shape invariance condition when the latter is also expected to
ensure that the JWKB (SJWKB) quantization is exact.

To obtain the results reported in (a) and (b) above, the fundamental solutions [1, 13–
15, 17, 32] have been found to be the most appropriate. In this paper, the descriptions
approximate semiclassical solutions, and JWKB approximations are exclusively understood
as the corresponding approximations to the fundamental solutions. This choice has serious
consequences for the form of the JWKB approximations which can differ substantially from
the conventional ones [12,24,25]. In particular, the presence of simple and second-order poles
in considered potentials generates unavoidable changes in the corresponding JWKB formulae.

Each set of the fundamental solutions is accompanied by the so-called Stokes graph. Both
the fundamental solutions and the Stokes graphs provide us with a uniform and systematic way
of solving any interesting 1D problem both exactly and in the semiclassical limit [1, 13–16].
The main property of the Stokes graph is to take into accountglobal features of a given problem
considered in the complex planes of variables entered into the problem (i.e. a position variable,
energy, the Planck constant, some potential parameter(s), etc). It is just these global features
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determining global structures of corresponding Stokes graphs which allow us to justify all the
known cases of exact JWKB formulae, as well as to gain insight as to what decides whether a
given JWKB formula can be exact or not.

This paper is organized in the following way.
In the next section, some necessary details of material from our earlier papers [13,14,16,23]

are included to make the present paper selfcontained. In this section, a mechanism generating
exact JWKB formulae is formulated and the periodicity of potentials and their Stokes graphs are
established as the necessary conditions for the mechanism to work. However, since every 1D
quantum mechanical problem can be formulated as a periodic one this condition rather suggests
the best method by which the action of the mechanism can be studied. In consequence, the real
conditions determining the possible success of the JWKB formula in being exact are related
to the singularity structure and the distribution of turning points in the basic period strip, as
was reported in point (b) above.

The conditions found in section 2 are next applied in section 3 to select ten periodic
potentials with the exact JWKB formulae.

In section 4, the JWKB exactness of energy levels of some aperiodic potentials
corresponding to the radial parts of the Coulomb and 3D isotropic harmonic potentials are
shown to explicitly follow from the periodic ones as a result of the change-of-variable procedure
which preserves the form of the Schrödinger equation [27]. In this section, the harmonic
oscilator potential is also mentioned with its exceptional mechanism for JWKB formula
exactness.

In section 5, a generalization of the results of the previous section is described invoking
some of our earlier results.

In section 6, the SUSY version of the conventional exact JWKB formulae found in the
preceding section is shown to be exact too, by direct calculations. The sufficient conditions
for the simultaneous exactness of the JWKB and SJWKB formulae are established, one of
which is the shape invariance of the considered potentials. Two corresponding theorems are
formulated in this section.

In section 7, the results of this paper are summarized and some conclusions are drawn.

2. Global symmetries of Stokes graphs and quantization

2.1. Quantization

Consider the Schrödinger equation written in the following form:

9 ′′(x, E, λ)− λ2q(x,E, λ)9(x,E, λ) = 0 (2.1)

where: λ2 = 2mh̄−2, q(x,E, λ) = V (x, λ) − E and a potentialV (x, λ) is assumed to be
a meromorphic function ofx andλ with the following asymptotic behaviour forλ → +∞
(h̄→ 0):

V (x, λ) ∼ V0(x) +
1

λ
V1(x) +

1

λ2
V2(x) + · · · . (2.2)

Together withq(x,E, λ), we shall consider a functioñq(x,E, λ) ≡ q(x,E, λ) +
δ(x, E, λ)/λ2, whereδ(x, E, λ) behaves according to (2.2) whenλ→ +∞. The necessity of
introducing this term while constructing the fundamental solutions to (2.1) has been discussed
in our recent paper [23]. The precise form ofδ(x, E, λ) depends on the types of singularities
of q(x,E, λ) and, in particular, on whether the latter possesses simple or second-order poles
(see below).
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LetE be real and letx1, x2, . . . , be the roots of̃q(x,E, λ), y1, y2, . . . its simple poles and
zk, k = 1, 2, . . . its second-or higher-order poles. Some of them can therefore be real but the
rest are complex and conjugated pairwise.

For each pointxi, yi, i = 1, 2, . . . , let us construct the actions

Wr
i (x, E, λ) =

∫ x

xi

√
q(y,E, λ)dy

W
p

i (x, E, λ) =
∫ x

yi

√
q(y,E, λ)dy.

(2.3)

A set of fundamental solutions is attached in a unique way to the so-called Stokes graph
corresponding to a given potentialV (x). Each Stokes graph is a collection of lines (Stokes
lines) in the complexx-plane which are loci of points where the real parts of action functions
defined by (2.3) vanish. The fundamental solutions are defined in connected domains called
sectors. Each sector contains one of the singular pointszi and its boundary consists of Stokes
lines, xi and the chosenzi itself: see figure 1. Quantization of 1D quantum systems with
the help of fundamental solutions and the construction of these solutions have been described
in many of our earlier papers [1, 13, 14, 16, 23, 32]. A typical scheme of such a quantization
particularly useful for meromorphic potentials has been discussed in [23]. We shall also adopt
this scheme here. Nevertheless, to make our paper selfcontained we shall remind the reader of
the basic ingredients of the scheme: namely, we consider the case of two real turning points,
x1, x2, the rest being complex and conjugated pairwise (we assumeq̃(x, E, λ) to be real). It
is assumed also that our physical problem is limited to a segment,z1 6 x 6 z2, at the ends of
which the potential has poles. In particular, we can push any ofz1,2 (or both of them) to∓∞,
respectively.

To construct a pattern of the corresponding quantization condition for energyE and to
simultaneously handle the cases of second- and higher-order poles we assumez1 to be the
second-order pole andz2 to be the higher ones.

It is also necessary to fix, to some extent, the closest environment of the real axis of the
x-plane in order to plot a piece of the Stokes graph which will give sufficient information to
write the quantization condition. To this end, we assumex3 andx̄3 as well asx4 andx̄4 to be
another four turning points, andz3 andz̄3 another two second-order poles ofV (x, λ) closest
to the real axis. Then a possible section of the Stokes graph is shown in figure 1 [23].

To this Stokes graph we can attach to each of its sectors,Sk, the corresponding fundamental
solution,9k, having the following structure [2,13,14,17,23]:

9k(x) = q̃− 1
4 (x)eσkλWi(x)χk(x) (2.4)

where

χk(x) = 1 +
∑
n>1

[
− σk

2λ

]n ∫ x

zk

dy1

∫ y1

zk

dy2

. . .

∫ yn−1

zk

dynω(y1)ω(y2) . . . ω(yn)(1− e−2σkλ(Wi(x)−Wi(y1)))

×(1− e−2σkλ(Wi(y1)−Wi(y2)))

. . . (1− e−2σkλ(Wi(yn−1)−Wi(yn))) (2.5)

with

ω(y) = δ(y)

q̃
1
2 (y)
− 1

4

q̃ ′′(y)

q̃
3
2 (y)

+
5

16

q̃ ′2(y)

q̃
5
2 (y)

. (2.6)
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γ

γ γ

γ

γ
γ

Figure 1. The Stokes graph corresponding to general quantization rule (2.7) [23].

In the above formulaexi are some of the roots lying at the boundary ofSk andσk = ±1
is chosen each time so as to ensure a negative sign of Re(σkWi(x)) for the whole sectorSk.

One of the conditions introduced earlier determining the functionδ(x, E, λ) is to make all
the multiple integrals in (2.5) convergent at their lower limitszk. It appears that for this reason
the function has to be defined as non-zero only ifzk is a second-order pole of the potential
considered. The second reason appears when the fundamental solutions are to be continued to
a point being a simple or double pole for the potential: namely, for both these cases we always
have to correct the potential by the same termδ(x, E, λ) = (2(x − zk))−2 at eachsimple or
double pole of the potential. Of course, in the case of an infinite number of these singularities the
arising infinite series has to be summed to some function having them as its simple and double
poles. Theδ-terms correcting the potentials considered in the above way we shall call Langer
corrections [23] (see also [22] where this correction appeared for the first time in this role).

Despite the necessity to equipq̃(x, E, λ) (andω) in theδ-term, there is still a possibility to
change the form of̃q(x,E, λ) (andω) by the substitutionδ(x)→ δ(x)+f (x, λ), wheref (x, λ)
is an arbitrary meromorphic function ofx not containing, however, the original singularities of
q̃(x, E, λ). By such a substitution both the original and the new solutions (2.4) coincide (up
to a multiplicative constant, see [24] for details). We shall use this possibility in our further
considerations.

There is no unique way of writing the quantization condition corresponding to the figure.
Three possible forms of this condition can be written as [16,23]:

exp

[
− λ

∮
K

q̃
1
2 (x, λ,E)dx

]
= −χ1→3(λ,E)χ2→3̄(λ,E)

χ1→3̄(λ,E)χ2→3(λ,E)
= −χ1→4(λ,E)χ2→3̄(λ,E)

χ1→3̄(λ,E)χ2→4(λ,E)

(2.7)

andχk→j (λ, E)k, j = 1, 2, 3, 4 are calculated by (2.5) forx → zj . The closed integration
pathK is shown in figure 1. In the figure, the pathsγ1→3, γ2→3, etc are the integration paths
in formula (2.5), whilst the wavy lines designate corresponding cuts of thex-Riemann surface
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γ

γ

γ
γ

π

π

π

π

Figure 2. The Stokes graph for the Morse-type potential (3.2).

π

π

π
π

π
πγ

γ

γ

γ

Figure 3. The Stokes graph for the first of the potentials (3.4).

upon which all the fundamental solutions are defined. The same designation conventions are
maintained in the remaining figures 2–11.

2.2. Symmetry conditions

As we have already mentioned several times, each 1D quantum mechanical problem can be
transformed into a periodic one by a suitable variable transformation: namely, if it is a non-
periodic problem defined on a segment (z1, z2) (as in the case of figure 1) then the transformation
x → (z2ex + z1)/(1 + ex) can be taken. If it is defined on a half (z1,∞) of the real axis then
the corresponding transformation isx → z1 + ex . Finally, when it is defined on the whole real
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γ

γ

γ

γ

π

−π

2π

−2π

Figure 4. The Stokes graphs corresponding to the second of the potentials (3.4) and the quantization
formulae (3.9).

axis, the transformationx → sinh x
2 can be performed.

We could proceed, therefore, considering only periodic potentials throughout. However,
below we shall provide arguments to justify that the periodic formulation of the considered
problems is the most suitable for the exactness problem discussed in this paper.

To this end, let us note that conditions (2.7) areexact. The lhs of the first condition has only
the JWKB form. If we substitute eachχk→j (λ, E) in (2.7) by unity (which these coefficients
approach whenλ → +∞) we obtain the well known JWKB-quantization rule. But in this
way the latter is, in general, only an approximation to (2.7). The exceptions to this are the
following three cases:

(10) All χk→j (λ, E) in (2.7) are really equal to (identical with) 1.
(20) They all cancel mutually for some reason.
(30) Both the above cases take place: i.e. some ofχk→j (λ, E) satisfy 10 and some 20.

The first case is very rare and the only known example of it is the harmonic oscillator
potential [32]. This case needs, in fact, for a givenχk→j (λ, E) a possibility to deform its
integration path properly to make all the integrations in (2.6) vanishing: i.e., this condition
demands some particular topology of turning points on thex-plane to occur.

The next case, if it is not to happen accidentally, can take place due to the possibility of
coefficients entering into formula (2.7) (where the coefficients can appear in pairs with their
complex conjugate partners dividing them) or due to some possible symmetry of the potential
V (x, λ) relating to theχ -coefficients present in the formulae. We shall show in the following
sections that the latter case is the main reason for all known cases of JWKB formulae which
provide us with the exact quantization conditions. In fact, the symmetry properties of the
potential, as well as a particular topology of its turning point and pole distribution cooperating
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α

α
β

β

2π

−2π

γ

γγ

γ

Figure 5. The second of potentials (3.10) and the Stokes graphs corresponding to the quantization
formulae (3.12).

together, are the most frequent ways to realize JWKB formula exactness.
The above statement means that the corresponding Stokes graphs and the underlying

potentials have to beinvariant under the corresponding symmetry transformations. It is
important to realize that this symmetry is just theinvariance, the latter being thenecessary
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2π

−2π

γ

γ

γ

γ

π

−π

Figure 6. The Stokes graph corresponding to the formula (3.14) quantizing the potential of Pöschl
and Teller.

−π

γ

γ

π
2π

γ

γ

… …

Figure 7. The Stokes graphs corresponding to formula (3.16) for another Pöshl–Teller potential.
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γ

−2π  −π  

γ

γ

γγ

π 2π

Figure 8. The Stokes graph corresponding to the exact JWKB formula (3.17).

condition for the coefficientsχ in (2.7) to be related by such transformations (otherwise we
would get only a relation betweendifferentdynamics connected by these transformations).

Suppose, therefore, thatq(x,E, λ) satisfies the following symmetry relation:

q(y(x), E, λ) = q(x,E, λ) (2.8)

for x → y(x) (general properties ofy(x) to keepq̃(y(x), E, λ) meromorphic have been
discussed in [23]). We shall also assume that it is always possible to find (if necessary)
δ(x, E, λ) such that (2.8) is satisfied bỹq(x,E, λ) as well under the same transformation.

In general,x → y(x) is a variable transformation in the Schrödinger equation leading us
to a newq-function as given by the following formula:

q(x,E, λ)→ q(y(x), E, λ)y′2(x) +
1

λ2

[
3

4

y ′′2(x)
y ′2(x)

− 1

2

y ′′′(x)
y ′(x)

]
. (2.9)

It is now easy to see that by using the earlier mentioned freedom in forming theq̃-function
corresponding to a newq as given by (2.9), we can achieve the formq̃(y(x), E, λ)y ′2(x)
by removing the second term in the rhs of (2.9) and adding (if necessary) the Langer term
δ(x)

λ2 y
′2(x).
If the corresponding Stokes graph is now to be invariant under such a transformation

then the full set of actions (2.3) which defines this Stokes graph has to be invariant too, up to
multiplicative constants. But, according to (2.8) and the above comment, we have∫ x

xk

√
q̃(ξ, E, λ)dξ =

∫ x

xk

√
q̃(y(ξ), λ, E)dξ =

∫ y(x)

y(xk)

√
q̃(ξ, E, λ)

dξ

y ′(ξ)
(2.10)

where, according to (2.8),yi = y(xi) are again (other) turning points ofq̃(x, E, λ).
From (2.9) we can conclude that this action set invariance is achieved ify ′(x) = C, where

C is real.
Therefore, the allowed transformationsy(x) are linear. Since they constitute a group then

it is easy to see that if|C| 6= 1 thenq̃(x, E, λ) has to have common accumulation points of
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ππππ
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π−π

−π1
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γ

γ

γ
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−π3
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π

2π

−2π
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Figure 9. The Stokes graphs corresponding to the potentialsV9(x, λ) (a) andV10(x, λ) (b), given
by formulae (3.18).

their roots and poles. Therefore, we shall limit further considerations to less singular cases of
q̃(x, E, λ), which means that we shall putC = ±1. The latter limitation leaves us with only
two types of allowed symmetry transformations: one which is essentially a reflectionx →−x
and the other a complex translation of thex-plane.

In this way we have shown that the most appropriate forms of potentials for discussing
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Figure 10. The two-sheetedφ9-Riemann surface for the unbroken superpotentialφ9 (case 10).

their possible JWKB quantization exactness are their periodic representations. The latter can
be additionally accompanied by the reflection transformation.

Therefore, in the next section, we shall consider systematically the periodic potentials
only.
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1,φ
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2,φ

φ

∞

φ

2,φ

−φ
√
¬ √

¬ φ

1,φ

Figure 11. The two-sheetedφ9-Riemann surface for broken superpotentialφ9 (case 20).

3. Periodic potentials quantized exactly by their JWKB formulae

3.1. Periodic holomorphic (entire) potentials

In general,q(x,E, λ)as ameromorphicfunction of complexx can be periodic with at most two
independent (in general complex) periods [18]. However, in the case of beingholomorphic
q(x,E, λ) can have only one period (being a constant in the presence of the second one).
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Further, sinceq(x,E, λ) is assumed to be real for its real arguments then its period can be
only real or only pure imaginary. For an obvious reason we shall consider only the last case,
assuming for simplicity that the period is equal to 2π i. In this case,q(x,E, λ) can be expanded
into the following Fourier series [18] (note that for holomorphic potentials we can always put
δ(x, E, λ) ≡ 0):

q(x,E, λ) =
∞∑

x=−∞
qn(E, λ)e

nx. (3.1)

If the behaviour ofq(x,E, λ) at x-infinity is to be of a finite type, series (3.1) has to be
abbreviated providing us with a finite sum. The latter should contain at least three terms if
we wantq(x,E, λ) to possess bound states. Letk andl (k > l + 1) be, therefore, the upper
and lower limits of this abbreviation, respectively. A few cases for whichk− l = 2, 3, 4 have
been considered in detail in [32]. Only one of them withk = 2 andl = 0 has been found to
be quantized JWKB exactly and is considered in some detail below.

In these investigations we shall make intensive use of the Weierstrass product
representation for the abbreviated series (3.1) in order to perform necessary calculation of
phases ofq(x,E, λ) alone as well as its functions. This representation is considered in
appendix A. There we have also explicitly calculated the relevant total phases ofq(x,E, λ)

for the casek = 2, l = 0 considered just below to provide us with an example of such
calculations.

Case:k = 2, l = 0. The case can be written as

q1(x, E, λ) = α(E, λ)e2x − 2β(E, λ)ex + γ (E, λ) (3.2)

whereα(E, λ), β(E, λ) andγ (E, λ) are known functions ofE andλ. In particular, for
α ≡ β ≡ 1 andγ ≡ −E, we get the well known Morse potential [19].

With α, β, γ > 0 andβ2 > αγ we get forq1(x, E, λ) = 0 two real roots (modulo 2π i)
and the corresponding Stokes graph shown in figure 2, wherex± = ln(β ± ±

√
(β2 − αγ )).

The quantization condition (2.7) according to the figure now looks as follows:

exp

[
− λ

∮
K

q1
1
2 (x, λ,E)dx

]
= −χ1→3(λ,E)χ2→3̄(λ,E)

χ1→3̄(λ,E)χ2→3(λ,E)
. (3.3)

It follows from the figure thatχ2→3 = χ2→3̄ ≡ 1 andχ1→3 ≡ χ1→3̄. The first of these
identities is satisfied because both the pathsγ2→3 andχ2→3̄ can be pushed out to infinity,
whilst the second is satisfied because of the periodicity of the corresponding integrands in
formulae (2.6) forχ1→3 andχ1→3̄. Therefore, we are left finally with the JWKB formula
which givesexactenergy levels in this case.

It should be noticed, however, that the equality of coefficientsχ1→3 andχ1→3̄ is not
immediate, i.e. it does not follow as a direct result of the periodicity ofq1(x, E, λ). First we
have to define the total phase ofq1(x, E, λ) according to the prescriptions of appendix A in
order to define uniquely its square roots present in the coefficientsχ1→3 andχ1→3̄. This has
been done in appendix A where we have found that the phases ofq1(x, E, λ) on the integration
paths ofχ1→3 andχ1→3̄ differ exactly by 4π , i.e. by the period of the square roots ofq1(x, E, λ)

just mentioned.
It should now be stressed that to get the last result the phases of theexponentialfactor in

the corresponding Weierstrass product have had to be taken into account: i.e., counting the
relevant phases provided by the roots ofq1(x, E, λ) alonewould give us anincorrect result.
This is what was not taken into account in the corresponding calculations of Rosenzweig and
Krieger [4] and Crescimanno [11]. Another possible source of erroneous calculations of the
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phases ofq1(x, E, λ) provided by these authors could be the arbitrary way they estimated these
phases which were provided by roots ofq1(x, E, λ), spread infinitely on the complex plane.
Theonly correct way of performing these calculations has to be relied on the corresponding
Weierstrass product representation ofq1(x, E, λ).

It can be shown that considering higher values ofk − l (>3) does not lead us to the
exact JWKB formulae since in these cases the conditions used so far (two real turning points:
reality and periodicity) are not sufficient to cause full cancellation ofχ in the corresponding
quantization conditions [32]. The main reason for that is that for higher values ofk + l an
increasing number of complex turning points in a basic strip of periodicity causesχ entering the
corresponding quantization conditions to be no longer related by the condition of periodicity,
because all the relevant integrations are performed inside the same basic strip.

The above situation does not change even if we additionally makeq(x,E, λ) an even
function ofx.

3.2. Periodic meromorphic potentials

The reality condition demanded forq(x,E, λ) allows us to choose its two possible basic
periods: pure real and pure imaginary.

Within this class of potentials we can obviously ignoreq(x,E, λ) with a real period but
without real poles. We must therefore consider the following possibilities forq(x,E, λ):

(a) It is holomorphic in some vicinity of the real axis but meromorphic outside it and is
periodic with its unique imaginary period equal to 2π i.

(b) It is meromorphic on the real axis with the only imaginary period equal to 2π i.
(c) It is meromorphic on the real axis with the only real period equal to 2π .
(d) It is meromorphic on the real axis with two periods: a real one equal to 2π and a pure

imaginary one equal to iω, with ω being any positive real number.

Case (a). The analysis performed in [32] showed that the following two potentials satisfying
the assumption of two real roots are allowed:

V (x) = α1ex + β1

2 sinh1
2(x − ia) sinh 1

2(x + ia)
= α1ex + β1

coshx − cosa
a 6= π

V4(x) = α2ex + β2

cosh2 1
2x

(3.4)

the second of which is essentially the Rosen–Morse one [20].
To obtain from (3.4) the potentials which would have bound states some conditions on

their parameters have to be satisfied. For the first potential they are

α1 > 0> β1 (3.5)

with the quantized energyE varying in the following range:

− 2x(α1− x)2
(|α1− x)− |y|)2 + 2|y||α1− x|(1− cosa)

< E < 0

x =
√
α2

1 + β2
1 + 2α1β1 cosa y = β1 + 2α1 cosa.

(3.6)

For the second potential in (3.4), we can putα2 > 0> β2 without losing its generality so
that the corresponding energy range is

− β2
2

α2 − β2
< E < 0. (3.7)
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A relevant Stokes graph corresponding to the first of the potentials (3.4) is shown in figure 3.
It follows immediately from the figure that the JWKB formula

exp

[
− λ

∮
K

[
α1ex + β1

coshx − cosa
− E

] 1
2

dx

]
= −1 (3.8)

cannot be exact in this case since the coefficientsχ1→4 andχ2→3 are not related by periodicity
and do not cancel in the exact condition.

The Stokes graph for the second of the potentials (3.4) is shown in figure 4. However,
in order to continue the relevant solutions corresponding to sectors 1 and 2 to sectors 3 and3̄
(the latter two containing the second-order poles atx = ±π i, respectively) we have to choose
properly theδ-piece ofω, as defined by (2.7), to admit the integrals in (2.6) to converge at the
poles. One can easily convince oneself that the choiceδ = [4 cosh(x/2)]−2 is sufficient to
achieve that aim, leaving simultaneously the original form of the Stokes graph of figure 4(a).
unchanged: i.e., it redefines the coefficientβ2 into β ′2(= β − 1/(4λ)2) only. Then, figure 4
provides us with the following quantization condition for the case:

exp

−λ ∮
K

√√√√α2ex + β2 − 1
16λ2

cosh2 1
2x

− E dx

 = −χ1→3̄(λ,E)χ2→3(λ,E)

χ1→3(λ,E)χ2→3̄(λ,E)
. (3.9)

According to appendix A the total change of the phase ofq̃4(x, E, λ) in (3.9) is determined
only by the distributions of zeros of its numerator, as well as by the corresponding zeros of
cosh2(x/2) as the denominator. Calculated (according to the rules of appendix A) with respect
to the points of the lines Imx = π and Imx = −π (shifted by the period 2π i) the numerator
phase change amounts to 2π , which is exactly the same as the total phase change of the
denominator. Therefore, the total phase change ofq̃4(x, Eλ) is exactly equal to zero: in this
case, that is sufficient forχ1→3 andχ1→3̄, as well as forχ2→3 andχ2→3̄, to coincide. It means
that the rhs of (3.9) is equal to−1 and the JWKB formula corresponding to (3.9) isexactin
the case considered possessing the ‘standard’ Bailey form [3].

Some possible different choices of Langer corrections leading us to different, but still
exact, JWKB formulae are described in [32].

Case (b). Assuming the presence of simple or second-order poles inq(x,E, λ) it is clear that
we can allow only one such pole in the main period strip. We assume its localization atx = 0.
In this way, the problem of quantization has to be reduced to a half of the real axis which
we choose, without loss of generality, to be the right one. The allowed classes of potentials
are [32]

V (x, λ) = α1ex + β1

sinhx

V5(x, λ) = α2ex + β2

sinh2 1
2x
.

(3.10)

Reasoning, as in the previous case, we have found that the JWKB formula for the first
potential cannot be exact.

For the second potential in (3.10), we can assume its parametersα2 andβ2 (without losing
generality) satisfy the following conditions:

β2, α2 + β2 > 0> 2α2 + β2 > α2

− β2
2

α2 + β2
< E < 4α2

(3.11)
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to ensure an existence of bound states in the local potential well. The shape of the
potential is shown in figure 5(a). The potential has to be modified by the ‘standard’δ-
term: δ = (4 sinh(x/2))−2 to allow the construction of the fundamental solution atx = 0
which results with the changeβ2→ β2 + (4λ)−2 in the potential. The quantization condition
corresponding to the Stokes graph of figure 5(b) now reads as

exp

[
− λ

∮
K

[
α2ex + β2 + 1

16λ2

sinh2 x
2

− E
] 1

2

dx

]
= −χ1→2̄(E, λ)χ3→2(E, λ)

χ1→2(E, λ)χ3→2̄(E, λ)
. (3.12)

It follows from (3.12) and figure 5(b) that in this case the coefficientsχ1→2 andχ1→2̄
cancel mutually using periodicity arguments (the phase difference produced by the numerator
of q̃5(x, E, λ) and equal to 2π for the two integration pathsγ1→2 andγ1→2̄ is cancelled by its
denominator sinh2(x/2)), whilst the remaining two coefficients cancel by their reality (they
are real and complex conjugated to each other). The JWKB formula which follows from (3.12)
is, therefore,exact.

Again it is worth noting that the considered potential can be modified by theδ-function
in a different way to generate at least four zeros in the basic period strip of the corresponding
Stokes graph allowing the numerator of the modifiedq̃5(x, Eλ) to change its phase by 4π
between the earlier mentioned paths (see [32]).

The possibility of making the last modification by enlarging the number of roots in the
basic period strip to four still suggests performing its completion in a different manner: namely,
by adding the term coinciding exactly with the second of the potentials (3.4). Of course we
also need to add the corresponding standardδ-term to the potential obtained in this way. The
resulting potential does not, however, satisfy the rule of no more than two turning points in the
period strip, so that the possibility of the exact JWKB-quantization condition to appear should
largely depend on symmetry properties of the relevantχ -coefficients. This potential can have
bound states for the following regime of its parameters (see the formula below for definition
of the parameters):α, α′ real and sufficiently close to zero, andβ, β ′ > 0. The Stokes graph
corresponding to the case is shown in figure 6 and the quantization condition related to it is

exp

[
− λ

∮
K

[
αex + β + 1

16λ2

sinh2 x
2

+
α′ex − β ′ − 1

16λ2

cosh2 x
2

− E
] 1

2

dx

]
= −χ1→2̄(E, λ)χ3→2(E, λ)

χ1→2(E, λ)χ3→2̄(E, λ)
.

(3.13)

It follows from the figure that the coefficientsχ3→2 andχ3→2̄ have to cancel mutually by
periodicity, but not the remaining two: no symmetry (except the complex conjugation) relates
these two coefficients. However, whenα = α′ = 0 the potential in (3.13) becomes invariant
under the reflectionx →−x and then the coefficientsχ1→2 andχ1→2̄ are equal only by the last
symmetry. (Note, however, the role played in fulfilling this symmetry by 4π of the difference
between the arguments ofq̃6(x, E, λ) corresponding to the case the latter takes on the paths
γ1→2 andγ1→2̄.) Therefore, the following quantization condition:

exp

[
− λ

∮
K

[
β + 1

16λ2

sinh2 x
2

− β
′ + 1

16λ2

cosh2 x
2

− E
] 1

2

dx

]
= −1 (3.14)

is exact. The potential in the above formula is of Pöschl and Teller [21].
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Case (c). This case contains four potentials but only the following two are hoped to be exactly
quantized JWKB [32]:

V7(x, λ) = α sinx + β

cos2 x
2

− π < x < π

V8(x, λ) = α sinx + β

cos2 x
2

+
α′ sinx + β ′

sin2 x
2

0< x < π

(3.15)

the second of which is essentially another of Pöschl–Teller’s [21].
Consider therefore the first of them. In order to have the binding potential well we have

to assumeβ > 0 but the choice of sign ofα is arbitrary since both cases are equivalent. So we
shall putα > 0 for convenience. Next we must note, however, that asymmetry introduced into
the potential byα 6= 0 completely eliminates the possibility of using the periodicity arguments
that makeα = 0 in (3.15). Once more, we have to chooseδ taking it in its ‘standard’ form:
δ = (4 cos(x/2))−2, obtaining the Stokes graph of figure 7. It is clear from the figure that
the coefficientsχ1→−2 andχ1→2, as well asχ1̄→−2 andχ1̄→2, are now equal using periodicity
arguments. Consequently, the following JWKB-quantization formula:

exp

[
− λ

∮
K

[
β + 1

16λ2

cos2 x
2

− E
] 1

2

dx

]
= −1 (3.16)

is exact.
Again some modifications of the above formula are possible [32].
Considering the second of the potentials (3.15) we first remove asymmetry in the latter

(for the same reason as discussed earlier) puttingα = α′ = 0 and next we notice that in the
basic period strip−π < Rex 6 π , the number of the four turning points is sufficient to
make the relevantχ periodic across the strip. Therefore, the only necessary modification of
the potential is the ‘standard’ choice forδ: i.e., δ = (4 sin(x/2))−2 + (4 cos(x/2))−2 which
gives the Stokes graph shown in figure 8. We obtain the following relations from the figure:
χ1→3̄ = χ−1→3 = χ1→3 andχ0→3 = χ0→3̄. The first equality in both of these equality
sequences follows from the parity invariance of the potential considered, whilst the second
in the first one is satisfied using periodicity arguments. Therefore, the following JWKB-
quantization condition:

exp

[
− λ

∮
K

[
β ′ + 1

16λ2

cos2 x
2

+
β ′ + 1

16λ2

sin2 x
2

− E
] 1

2

dx

]
= −1 (3.17)

is exact.

Case (d). Examples of this case are provided by elliptic functions [18]. The detailed analysis
performed failed to provide us with the exact JWKB formulae [32].

3.3. Four turning points in the basic period strip

This possibility has been already considered in the particular cases of the potentialsV6(x) and
V8(x), shown in their exact JWKB formulae (3.16) and (3.17). The symmetric distributions
of their four turning points in basic period strips guaranteed the success of these formulae to
quantize exactly their energy levels.
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There is still another pair of potentials with four turning points in their basic period strip
quantized exactly by the JWKB formulae. They are

V9(x, λ) = α + β sinx

cos2 x
− π

2
< x < +

π

2
α > β > 0

V min
9 = 1

2

(√
α2 − β2 + α

)
V10(x, λ) = α + β sinhx

cosh2 x
−∞ < x < +∞ β > 0

V min
10 = − 1

2

(√
α2 + β2 − α

)
.

(3.18)

One can easily convince oneself that completed by the ‘standard’δ-terms ((2 cosx)−2

for the first potential and−(2 coshx)−2 for the second one), the energy levels of both the
potentials are alsoexactlyJWKB quantized. For the first potential, this fact follows as a result
that this potential is symmetric with respect to the real axis on the vertical lines Rex = ±π/2,
whilst for the second potential it is due to the analogous symmetry which is valid on the lines
Im x = ±π/2. These symmetries cause the coefficientsχ calculated on the paths shown in
figure 9 to cancel mutually in the corresponding quantization formulae (2.7).

4. Aperiodic exactly JWKB-quantized potentials

The periodic potential (3.2) which provides us with the exact JWKB-quantization
formulae (3.3) can also serve as the source of aperiodic exactly JWKB-quantized potentials.
The latter can be obtained from the former by a trivial change-of-variable procedurex → y(x)

resulting in the potential transformations [23,27] given by formula (2.9). The only necessary
requirement for a relevant change is to provide by it in the resulting potentials a free (i.e.
x-independent) term which can play the role of an energy parameter. The latter demand,
when applied to potential (3.2), permits the following two possibilities: 10, ex → x and
20, ex/2 → x. Adjusting properlyα, β andγ in (3.2) we get in this way the radial parts of
the Coulomb potentialV2(x) in the first case and of the 3D homogeneous harmonic oscillator
potentialV3(x) in the second one.

The same method can be applied to the potentials which arenot exactly JWKB quantized
providing us with aperiodic potentials with the same property: i.e., the method does not allow
us to make any further estimations of the resulting potentials for their not being quantized
exactly by the corresponding JWKB formulae (which on their own would not be a simple
task).

As mentioned earlier, there is only one known aperiodic potential for which the simplest
vanishingmechanism of all the integrations in (2.5) works. This is the harmonic oscillator
potential: V11(x) = α2x2, unique among all the polynomial potentials for which the
corresponding JWKB formulae can be exact. This well known exactness can be easily proved
using the polynomial form of the potential [32]. The same result can be achieved using its
periodic representation by changingx → sinh x

2 . However, for this particular case, the periodic
representation does not show its advantage over the aperiodic one. Therefore, we shall not
consider the corresponding equivalent periodic formulation.

5. More general exactly JWKB-quantized potentials

The periodic potentials considered in the previous section are the simplest ones of all the
potentials quantized exactly by the JWKB formula. A generalization of their forms to the ones



376 P Milczarski and S Giller

which still can keep the exactness of the corresponding JWKB formula can be done in the
following way.

Let V (x) mean any exactly JWKB-quantized periodic potential of the previous section.
Let V (x, p) mean a real parameter family of periodic (with respect tox) potentials with
the property that in the limitp → 0, V (x, p) smoothly approachesV (x). Then, forp
small enough, the Stokes graph corresponding toV (x, p) has to resemble the Stokes graph
corresponding toV (x). By such a resemblance we mean the following:

(1) To any singular point of a Stokes graph ofV (x) there corresponds a set of singular points
of a Stokes graph ofV (x, p) which reduce to the former point in the limitp→ 0. Each
member of such a set we shall call a singular point blob.

(2) To any turning point of the Stokes graph ofV (x) there corresponds a set of turning points
of V (x, p) which reduces to the former point in the limitp→ 0. We shall call such a set
a turning point blob.

(3) There is one-to-one correspondence between the sectors of the two Stokes graphs such that
the sectors of a Stokes graph ofV (x, p) reduce smoothly to the corresponding sectors of a
Stokes graph ofV (x)whenp→ 0. In particular, the boundary conditions are formulated
for both the potentialsV (x, p) andV (x) in sectors satisfying the correspondence just
described.

(4) Each set of Stokes lines which emerge from some singular (turning) point blob can be
mapped into a definite set of Stokes lines of a Stokes graph corresponding toV (x),
emerging from the point to which this singular (turning) point blob reduces in the limit
p → 0. Each of such sets can be divided into disjoint subsets (sheaves) of Stokes lines
each transforming smoothly whenp → 0 into one particular Stokes line emerging from
the limiting point.

(5) For anyp a set of symmetries ofV (x, p) and of its Stokes graph is the same as forV (x)

and its Stokes graph.

Examples ofV (x, p) with properties 10–50 and the Planck constant ¯h as parameterp can
be found in [1]. With these properties,V (x, p) provides us with the JWKB formula quantizing
exactly the energy levels ofV (x, p).

6. JWKB and SJWKB formula exactness and its relation with shape invariance
symmetry of potentials

In connection with the SUSY formulation of quantum mechanics, the SUSY JWKB
approximations have been suggested as different from the conventional ones which have
appeared to be exact [7, 8]. It has been also noticed, however, that their exactness has been
parallel to the exactness of the conventional ones [7,8,11].

So far, we have shown that the exactness of the conventional (i.e. not SUSY) JWKB
formulae was rather exceptional and was related to the simplest singularity and turning
point structures of the corresponding Stokes graphs. Since the SUSY quantum mechanics
quantization problems seem to be governed by the same rules, we can expect that the exactness
of the SUSY JWKB formulae have to follow in some way from the conventional ones. We
will show below that this is indeed the case.

Note, however, that there is also a common conviction that the SUSY JWKB exact
quantization conditions are not only independent of the conventional ones but also that their
exactness in some cases of potentials is in contrast with the approximate character in these cases
of the conventional JWKB formulae. As such, potentials are considered as shape invariant [29].
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It is shown below that also in these cases the parallelness of the exactness of both kinds of
formulae is still maintained.

Let us examine first the question of how the SUSY JWKB exact formulae follow from the
conventional ones.

6.1. Exactness of SUSY JWKB formulae following from conventional ones

Let us remind ourselves that if a potentialV (x, λ) can be put in its SUSY formV (x, λ) ≡
V−(x, λ) = φ2(x, λ) − φ′(x, λ)/λ + ε0 (ε0 is the energy of the fundamental level inV (x) if
SUSY is exact) then the conventional JWKB-quantization condition:

−λ
∮
K

√
V (x, λ) +

δ(x, λ)

λ2
− E dx = (2m + 1)π i m = 0, 1, 2, . . . (6.1)

for the exact SUSY is to be substituted by [7,8]

−λ
∮
K

√
φ2(x, λ)− (E − ε0) dx = 2π im m = 0, 1, 2, . . . . (6.2)

If (6.1) is exact, then as previously mentioned, (6.2) is also very frequently. Let us
analyse how this can happen. The analysis shall be performed for both cases of broken and
unbroken superpotentialsφ which can representV (x, λ). It will be shown that in both cases
condition (6.2), if it isexact, remains the same, which is in contrast with its form representing
the lowest JWKB approximation only, in which case its rhs coincides rather with (6.1), whilst
the unbroken one coincides with (6.2) [7,8,26].

Let us now recapitulate all 11 potentialsVk(x)and the corresponding̃qk(x, E, λ)-functions
we found in the previous section to be quantized exactly by the corresponding JWKB formulae.
They are

q̃1(x, E, λ) = V1(x)− E = α2e2x − 2βex − E
−∞ < x < +∞ β > 0> E

q̃2(x, E, λ) = V2(x) +
1

4λ2x2
− E = −α

x
+
β + 1

4λ2

x2
− Ex, α, β > 0> E

q̃3(x, E, λ) = V3(x) +
1

4λ2x2
− E = α2x2 +

β + 1
4λ2

x2
− E x, β,E > 0

q̃4(x, E, λ) = V4(x)− 1

(4λ coshx2)
2
− E = αex − β − 1

16λ2

cosh2 x
2

− E

−∞ < x < +∞ β > 0 − β < 2α

q̃5(x, E, λ) = V5(x) +
1

(4λ sinh x
2)

2
− E = αex + β + 1

16λ2

sinh2 x
2

− E

0< x < +∞ β, α + β > 0> 2α + β > α

q̃6(x, E, λ) = V6(x) +
1

(4λ sinh x
2)

2
− 1

(4λ coshx2)
2
− E = β + 1

16λ2

sinh2 x
2

− α + 1
16λ2

cosh2 x
2

− E

0< x < +∞ α, β > 0

q̃7(x, E, λ) = V7(x) +
1

(4λ cosx2)
2
− E = α + 1

16λ2

cos2 x
2

− E (6.3)

−π < x < π α > 0

q̃8(x, E, λ) = V8(x) +
1

(4λ cosx2)
2

+
1

(4λ sin x
2)

2
− E = α + 1

16λ2

cos2 x
2

+
β + 1

16λ2

sin2 x
2

− E
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q̃9(x, E, λ) = V9(x, λ)− 1

(2λ coshx)2
− E

= α − 1
4λ2 + β sinhx

cosh2 x
− E −∞ < x < +∞ β > 0

0< x < π α, β > 0

V min
9 = − 1

2

(√
α2 + β2 − α

)
q̃10(x, E, λ) = V10(x, λ) +

1

2λ2 − E

= α + 1
4λ2 + β sinx

cos2 x
− E − π

2
< x < +

π

2
α > β > 0

V min
10 = 1

2

(√
α2 − β2 + α

)
q̃11(x, E, λ) = V11(x, λ)− E = α2x2 − E.

In order to represent the above potentials by their SUSY ones, one has, in principle, to
solve the non-uniform Riccati equations with their rhs given by the potentials listed. In general
such a task is rather difficult. Fortunately, for most of the above potentials, it is possible to
find these representations just by a trivial guess. To each of the potentials listed above one can
guess several (at least two) solutions, one of which corresponds to a superpotential realizing
the SUSY exactly whilst the remaining ones correspond to a broken supersymmetry. The latter
means that the supersymmetry breaking can be realized in many ways. The ways considered
below take into account only the possibility to define by a superpotentialφ the corresponding
ground state solution90 by the following representation:

90(x) = exp

[
− λ

∫ x

φ(y) dy

]
a < x < b

(6.4)

wherea, b (a < b) define boundaries of the corresponding quantization problem. Note that
90, as given by (6.4), satisfies the Schrödinger equation (2.1) forE = ε0 with the potentials
V (x, λ)(≡ V−(x, λ)) listed above. There are four possibilities:

(10) 90 vanishes at both the boundariesa, b—the supersymmetry is exact and90 is the
ground state wavefunction;

(20) and (30) 90 vanishes at one of the boundaries only (a or b respectively)—the
supersymmetryhasto be broken; and

(40) 90 blows up at both the boundaries—the supersymmetry seems essentially to be
broken but there is still a possibility that the ground state90 has been constructed by the
erroneous choice ofφ—there are infinitely many solutions satisfying the Schrödinger equation
considered withE = ε0 but blowing up at both the boundaries even if the corresponding ground
state exists with this energy.

The latter possibility cannot happen in cases 20 and 30: blowing up of90 at one of
the boundaries only means that the ground state withE = ε0 cannot exist in these cases.
One can expect, therefore, that resulting relations between the energy spectra provided by the
quantization conditions defined by the allowed superpotentialsφk, corresponding to each of
the potentialsVk, k = 1, . . . ,11, listed earlier, and the original spectra of the latter potentials
can depend on the way the supersymmetry is broken by each particularφk.

A full list of the allowed superpotentialsφk corresponding to each of the potentialsVk,
k = 1, . . . ,11, with the above properties 10–40 (attaching to each of them the corresponding
category) are collected in appendix B.
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Let us note further that becauseλ can vary we can take it sufficiently large to expand the
integrand in (6.2) into a series with respect toφ′ − δ/λ. We get

−λ
∮
K

√
φ2 − Ẽ dx −

∑
n>1

1

λn−1

0[n− 1
2]

n!0[− 1
2]
×
∮
K

[φ′ − δ
λ
]n

(φ2 − Ẽ)n− 1
2

dx = (2m + 1)π i (6.5)

whereẼ = E − ε0.
Making a further change of variable:x → φ = φ(x, λ) in the integrands of the

series in (6.5) and puttingF1(φ, λ) ≡ φ′(x(φ, λ), λ) − δ(x(φ, λ), λ)/λ andF2(φ, λ) ≡
φ′(x(φ, λ), λ) we obtain

−λ
∮
K

√
φ2 − Ẽ dx −

∑
n>

1

λn−1

0[n− 1
2]

n!0[− 1
2]
×
∮
Kφ

F n1 (φ, λ)

(φ2 − Ẽ)n− 1
2

dφ

F2(φ, λ)
= (2m + 1)π

(6.6)

where the integrations under the sum in (6.6) go now into theφ-plane. A possibility of
making these integrations now depends on analytic properties of the functionsF1,2(φ, λ) on
the complexφ-plane. The explicit forms of these functions for each of the potentials of (6.3)
are also given in appendix B. The following basic observations of the properties ofF1,2(φ, λ)

are valid for the integrations in (6.6):

(1) In all the cases considered the functionsF1,2(φ, λ) areholomorphicbeing defined on at
most two-sheetedφ-Riemann surfacesRφ with square root branch points.

(2) There are as many different sheets ofRφ as the number of different singularities of the
considered potentials mapped byφ(x, λ, a) into different infinities of the corresponding
φ-Riemann surfaces.

(3) On each of these sheets the functionsF1,2(φ, λ) diverge to infinity no faster thanφ2 when
φ→∞.

The above properties ofF1,2(φ, λ) can be easily understood noticing thatφ(x, λ, a) and its
derivativeφ′(x, λ, a), as a function ofx, are meromorphic at the same points as the potentials
defining them. (Note, however, that as such we also consider points located at infinities, so that,
for example, ex or xn are considered to be singular forx →∞.) Therefore, these singularities
are all mapped by the transformationx → φ = φ(x, λ) into the corresponding infinities of
theφ-Riemann surface sheets. If these mappings differ in some way then the corresponding
infinities have to be approached on different sheets ofRφ .

On the other hand, the singular points ofF1,2(φ, λ) can appear only at the points where
φ′(x, λ, a) vanishes. These are exactly the square root branch points ofF1,2(φ, λ) on their
correspondingφ-Riemann surfaces since generic zeros ofφ′(x, λ, a) are simple.

The second of the above properties follows as a result of the specific singularities the
considered potentials have on thex-plane. Namely, one can easily check that by taking into
account all types of singularities of these potentials we have

(i) For V−(x, λ) diverging as ex for x →∞, F1,2 diverge linearly withφ whenφ →∞ on
a given sheet.

(ii) For V−(x, λ) diverging asx2 for x →∞, F1,2 approach constant values whenφ→∞.
(iii) For x close to a second-order polex0 of V−(x, λ), F1,2 diverge to infinity asφ2 when

φ→∞ on a sheet, the infinity of which is a map of the corresponding polex0.

Next we can still observe the following crucial properties of the transformationx → φ =
φ(x, λ) and of the quantization conditions (6.1) for all the exactly JWKB-quantized potentials
considered above:
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(4) In the cases when there are two pairs of turning points in the corresponding basic
period strip which can be used equivalently to quantize the energy levels by (6.1) then
x → φ = φ(x, λ)maps these pairs and the corresponding pieces of the basic period strip
into corresponding sheets of theφ-Riemann surfaces in such a way that conditions (6.1)
can be written independently and equivalently on each sheet.

Now taking into account the above properties (1)–(4) we can rewrite the contour integrals
of the series in (6.6) as the following sum over the contours distributed on the different sheets:

−λ
∮
K

√
φ2 − Ẽ dx −

∑
n>1

1

λn−1

0[n− 1
2]

n!0[− 1
2]

×1

2

∑
r=1,2

∮
Kr,φ

F n1 (φ, λ)

(φ2 − Ẽ)n− 1
2

dφ

F2(φ, λ)
= (2m + 1)π (6.7)

whereKr,φ, r = 1, 2 surround the corresponding pairs of turning points.
SinceF1,2(φ, λ) are holomorphic outside the contoursKr,φ, r = 1, 2 we can deform these

contours to the ones which partly surround the cuts on each sheet and partly coincide with the
circles of sufficiently large radii completing these contours on each sheet. Then the integrations
along the cuts cancel pairwise and we are left only with the integrations along the circles each
taken on different sheets.

Next expanding the denominators on these circles we get

−λ
∮
K

√
φ2 − Ẽ dx −

∑
n>1

1

λn−1

0[n− 1
2]

n!0[− 1
2]

×1

2

∑
r=1,2

∑
k>0

Ẽk
0[k + n− 1

2]

k!0[n− 1
2]

∮
Cr,φ

F n1 (φ, λ)

φ2n+2k−1

dφ

F2(φ, λ)
= (2m + 1)π i. (6.8)

A final result of the integrations in (6.8) depends now of course on the particular forms of
the expansions ofF1,2(φ, λ) into their corresponding Laurent series.

It can be easily checked, however, that the series in the lhs of (6.8) becomes energy
independent only in the case when the Laurent series expansions ofF1,2 both abbreviate at a
power ofφ no higher than second. This is simply the case of the potentials considered.

Suppose, therefore, that on therth sheetF1,2(φ, λ) =
∑

k>1F
(r)

1,2;k(λ)φ
−k + a(r)1,2(λ) +

b
(r)
1,2(λ)φ + c(r)1,2(λ)φ

2. Then from (6.8) we get

−λ
∮
K

√
φ2 − Ẽ dx +

1

2

∑
r=1,2

π iδb(r)0δc(r)0 + π iδc(r)0 − 2π i
λ

c
(r)
2

√1− c
(r)
1

λ
− 1


= (2m + 1)π i. (6.9)

As can be seen from (6.9), the contributions of the constant and the linear divergences of
F1,2(φ, λ) at theφ-infinities are completely independent of particularities of these divergences.
One can easily check, however, that this is also true for the contributions of the corresponding
coefficientsc(r)1,2(λ): i.e., these contributions are also independent of both the potential
considered and the coefficients themselves, depending instead entirely on the type of the
potential singularities (which for the case considered correspond to the second-order poles of
the potentials): namely, these contributions arealwaysthe same giving the valueπ i for each
circle integration independent of whether the supersymmetry is exact or broken [32].
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Therefore, for the 11 potentials (6.3) we have proved in this way the following equality
between the JWKB integral and its SUSY form:∮
K

√
φ2(x, λ)− 1

λ
φ′(x, λ) +

δ(x, λ)

λ2
− (E − ε0) dx =

∮
K

√
φ2(x, λ)− (E − ε0) dx − π i

λ
.

(6.10)

Of course, we could perform the above calculations in the reverse direction: i.e. from
SUSY to the conventional JWKB integral, which can formally be realized in formula (6.10)
by moving the termπ i from the rhs to the lhs of the formula.

In a condensed form, the method of performing the above calculations has been
demonstrated for the potentialV9(x) in appendix C.

The final conclusion is very important and, furthermore, allows for the following
generalization of (6.10):∮
K

√
φ2(x, λ)± 1

λ
φ′(x, λ) +

δ(x, λ)

λ2
− (E − ε0) dx =

∮
K

√
φ2(x, λ)− (E − ε0) dx ± π i

λ
.

(6.11)

Also, the entire discussion above allows us to formulate a slightly more general theorem
which includes as its particular cases the 11 potentials listed by (6.3). Namely, we have the
following theorem.

Theorem 1. Let the following assumptions be satisfied for the potentialV (x, λ, a) and its
superpotential partnerφ(x, λ, a):

(a) V (x, λ, a) andφ(x, λ, a) are meromorphic on thex-plane.
(b) The functionsF1,2(φ, λ, a) corresponding to the superpotentialφ are holomorphicon a

n-sheetedφ-Riemann surfaceRφ with the square root branch points.
(c) At the infinity of each sheet the functionsF1,2(φ, λ, a) diverge with an integer power ofφ

but no faster than the second.
(d) There are pairs of turning points (among which there is a pair of physical ones) such that

the JWKB (SJWKB) quantization integral can be written alternatively and equivalently
around any of the pairs and on each sheet ofRφ there is an image ofexactly oneof these
pairs of turning points.

Then relation (6.11) holds.

The proof of this theorem differs from the earlier proof of formula (6.11) only by the
assumed number of sheets of the Riemann surfaceRφ which is finite but not limited to two.

Let us finish this section by comparing the energy levels obtained by formula (6.1) with
those obtained by (6.2) using in the latter the respective superpotentials of cases 10–40 above.
We can conclude that the levels given by (6.1) are reproduced by (6.2):

(i) Exactly in case 10 of the superpotentials.
(ii) By being shifted upby half a unit used to enumerate the levels in cases 20 and 30 of the

superpotentials.
(iii) By being shifted upby awholeunit used to enumerate the levels in cases 20 and 30 of the

superpotentials.

It is clear that the above differences follow as a result of the different enumeration of
energy levels in the compared spectra (m in (6.1) starts from zero whilst in (6.2) from unity),
as well as due to different choices of the energy levelsε0 with respect to which the levels of
the spectra are measured in all of the cases 10–40.
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6.2. Exactness of SUSY and conventional JWKB quantizations in the case of shape invariant
potentials

In the previous section we have shown that for the class of potentials given by (6.3) for which
the JWKB formulae were exact the corresponding SUSY partner formulae were exact also.

The exactness of the JWKB formulae obtained by detailed analysis of the potentials and
the corresponding Stokes graphs was dependent on particular symmetries of the latter and on
the singularity structure of the potentials.

The exactness of the SJWKB formulae followed as a direct result of analytic (or
rather meromorphic) properties of the potentials mapped into the Riemann surface of
the superpotentials themselves, i.e.no other additional properties of the potentials and
superpotentials have been necessary for this simultaneous exactness of formulae (6.1), (6.2).

However, the exactness of the SJWKB quantization formulae for the same potentials (6.3)
has been argued to also follow as a result of their common property of being shape
invariant [28–31]. This means thatVk(x, λ) ≡ Vk,−(x, λ), k = 1, . . . ,11, depends
additionally on some parametera so that for its SUSY partnerVk,+(x, λ, a) we have [29]

Vk,+(x, λ, a1) = Vk,−(x, λ, a) +Rk(a1)

k = 1, . . . ,11
(6.12)

with a1 = fk(a).
It appears that all the potentials considered so far and being exactly JWKB (SJWKB)

quantized belong to the class of the shape invariant potentials [28]. In their case eachf (a) is
simply a translation of the parametera.

The exactness of (6.2) following from (6.12) has been suggested by Duttet al [30] and
established by Barclay and Maxwell [31] at the perturbative level. It was argued also (see
Cooperet aland [28], for example) that the exactness of SJWKB formulae (6.2) which follows
from (6.12) takes place even when the conventional one fails.

As we have seen earlier, the latter claim, however, cannot be true in the case of the 11
potentials (6.3) and in the case of potentials satisfying the conditions of theorem 1.

Nevertheless, it is still interesting how the shape invariance symmetry expressed by (6.12)
is related to the singularity structures of the potentials (6.3) which guaranteed the exactness of
their corresponding JWKB and SJWKB formulae.

The following theorem establishes this relation.

Theorem 2. Let the following assumptions be satisfied for the potentialV (x, λ, a):

(1) The potentialV (x, λ, a) is shape invariant.
(2) The potentialV (x, λ, a) satisfies all the conditions of theorem 1.

Then the conventional and SJWKB formulae forV±(x, λ) are exact.

Proof. The theorem follows from the repetitions of the reasonings which lead us to theorem 1
and from the following sequence of equalities:∮
K

(φ2(a)− Ẽ) 1
2 dx =

∮
K

(φ2(a1)− Ẽ +R(a1))
1
2 dx

+
∮
K

(f (F−1 (a1), Ẽ − R(a1))− f (F +
1 (a), Ẽ)) dx = · · ·

=
∮
K

(φ2(am)− Ẽ +R(a1) + · · · +R(am)) 1
2 dx
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+
m∑
p=1

∮
K

(f (F−1 (ap), Ẽ − R(a1)− · · · − R(ap))

−f (F +
1 (ap−1), Ẽ − R(a1)− · · ·R(ap−1))) dx a0 = a R(a0) = 0 (6.13)

wheref (F±1 , Ẽ) is defined by∮
K

[
φ2(a)± 1

λ
φ′(a) +

δ

λ2
− Ẽ

] 1
2

dx =
∮
K

(φ2(a)− Ẽ) 1
2 dx +

∮
K

f (F±1 (a), Ẽ) dx (6.14)

with F±1 = ±φ′ + δ/λ.
From assumption (2) it follows that every one of the contour integrals in the sum of the

rhs of (6.13) being rewritten to be taken on some sheet ofRφ can be taken oneachsheet ofRφ
in the following way:∮

K

f (F±(x, a), Ẽ) dx = 1

n

n∑
r=1

∮
Kφ,r

f (F±1 (φ, a), Ẽ)
dφ

F2(φ)
(6.15)

whereF2(φ) ≡ φ′(x(φ)).
It follows further from assumption (2) that every contourKφ,r , r = 1, . . . , n, can be

deformed on a sheet which is defined onto a circle of sufficiently large radius and to pieces of
this contour which cancel mutually with analogous pieces of other contours. The net result
of these deformations are the integrations performed on every sheet along the circles with
sufficiently large radii. On the circles the integratedf (divided byF2) are holomorphic and
diverging to infinity no faster than the second power ofφ. This guarantees that all these
integrals can be calculated in a way similar to that which we used earlier in proving theorem 1.
In particular, independent of the type of singularity ofV (x, λ, a) each infinity contributes the
same to the sum (6.15): namely±iπ/λ for theF±1 cases, respectively. Therefore, the total
value of the integral in the lhs of (6.15) is also±iπ/λ, accordingly. Finally, formula (6.13)
becomes∮
K

(φ2(a)− Ẽ) 1
2 dx =

∮
K

(φ2(am)− Ẽ +R(a1) + · · · +R(am)) 1
2 dx − 2π im

a0 = a R(a0) = 0.
(6.16)

Substituting now in (6.16)̃E = R(a1) + · · · +R(am) ≡ Ẽm we get the result (6.2) where
for the broken supersymmetry the integerm begins instead fromm = 1.

The corresponding conventional JWKB exactness follows immediately from
equalities (6.11) and (6.14). Namely, we get∮
K

[
φ2(a)± 1

λ
φ′(a) +

δ

λ2
− R(a1)− · · · − R(am)

] 1
2

dx = (2m∓ 1)π i. (6.17)

�

The following remark is in order.
If F1,2(φ) diverged to infinity faster thanφ2 then every integral off (F±1,2) in (6.13) would

contain anE-dependent infinite series not reducing, of course, to simple values±iπ : i.e.,
relation (6.16) as well as (6.17) could no longer be valid.

However, it is shown in appendix D thatanyinteger power of the divergency ofF1,2(φ) to
infinity is allowed by the shape invariance condition (6.12). Therefore, the bound on this power
introduced to theorem 2 by its assumption (2), is essential. It is still, however, worth noting
that the bound in the last assumption can be substituted equivalently by another property of the
superpotentialφ(x, λ, a) if the latter is shape invariant (i.e. it satisfies (6.12) if this condition
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is expressed in terms of this superpotential). The discussed assumption is equivalent to the
demand that theshifted superpotentialφ1 = φ(x, λ, a1), a1 = f (a), when expressed as
a function ofφ = φ(x, λ, a) (i.e. φ1 = φ̃(φ, λ, a) diverges linearly with the latter when
φ→∞, whilst the corresponding proportionality coefficient approaches unity whenλ→∞.
All the 11 potentials (6.3) satisfy this demand. It is shown in appendix D that the shape
invariant conditon (6.12) can be then fulfiled only ifF2(φ, λ, a) does not diverge faster than
φ2.

7. Discussion and conclusions

In this paper we have shown that the early success of the exact JWKB and SJWKB formulae
was related to the simple singularity and turning point structures of potentials. In particular,
this was facilitated by having no more than two (occasionally four) turning points and no more
than one second-order pole in the basic period strip. In the opposite case, an unavoidable
proliferation of additional sectors in the basic period strip prevents the periodicity properties
of the corresponding quantization conditions (2.7) to be used to reduce the conditions to the
pure JWKB ones. The possible relaxation of these conditions has been described in section 5
and the corresponding examples were given in an earlier paper by one of us [1].

The above simplicity conditions reduced effectively a number of exactly JWKB-quantized
potentials to only 11.All of them have long been known. However, due to the investigations
above they have been given the status of being rather exceptional.

Furthermore, we have shown that the sufficient condition for a potential to be exactly
JWKB(SJWKB)-quantized is the shape invariance of the latter supported by the holomorphicity
of the functionsF1,2(x, E, λ) on the Riemann surface of the corresponding superpotential and
their proper asymptotic behaviour on the surface. If the latter properties are satisfied the
energy levels are quantized exactly and simultaneously by the JWKB formulae of both types:
conventional and SUSY. The two theorems of section 6 give necessary and sufficient conditions
for this to happen. Both the theorems show the close and direct relation between the exactness
of the JWKB and SJWKB formulae which follows on the one hand from the shape invariance
of the potentials and on the other hand from the singularity structures of the latter on thex- and
φ-planes. In fact, we can conclude that the results of section 3 are nothing but the solutions to
the shape invariance symmetry condition (6.12) expressed in terms of the allowed numbers of
turning points and poles in the basic period strips.

We must note also that the results obtained by Inomataet al [26] for the form of the SUSY
JWKB formulae for broken SUSY potentials do not contradict ours which always choose the
form of Comtetet al [7] since the latter concern their exact, unapproximated forms which
are the subject of Inomataet al. However, despite having the same form, formula (6.2) gives
differentresults for energy levels depending on whether the supersymmetry is exact or broken:
in the latter case reproducing effectively the result of Inomataet al.

Acknowledgments
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Appendix A

Here we shall construct the Weierstrass product representation for the following holomorphic
2π i-periodic function:

q(x,E, λ) =
k∑
n=l

qn(E, λ)e
nx (A.1)

with k > l andeven k−l and having only simple zeros.
Let y1, . . . , yk−l be the (simple) zeros of the polynomialq(logy,E, λ)/yl , thenxp,n =

logyp + 2π in, p = 1, . . . , k− l, n = 0,±1,±2, . . . , exhaust all zeros ofq(x,E, λ). We shall
show thatq(x,E, λ) can be represented by

q(x,E, λ) = Ce
k+l
2 xx

[
1− x

x2,0

]
· · ·
[
1− x

xk−l,0

]
×

k−l∏
p=1

∏
n>1

[
1− x

logyp + 2π in

] [
1− x

logyp − 2π in

]
(A.2)

whereC = q(x,E, λ)/x|x=0 orC = q(0, E, λ) if x = 0 is not a root ofq(x,E, λ).
The above formula follows from the observation thatQ(x,E, λ) = q(x,E, λ)exp[(−k/2

− l/2)x] is also 2πi-periodic and holomorphic with the same roots asq(x,E, λ) and from
another observation that the convergence-producing exponentials in the rhs of (A.2) can be
shifted to the front of the product if the latter is taken in the form shown above. Therefore, the
Weierstrass product representation ofQ(x,E, λ) can be given in the following form:

Q(x,E, λ) = Ceαxx

[
1− x

x2,0

]
· · ·
[
1− x

xk−l,0

]
×

k−l∏
p=1

∏
n>1

[
1− x

logyp + 2π in

] [
1− x

logyp − 2π in

]
(A.3)

whereα is an integer by periodicity ofQ. In general,α should depend analytically on the
coefficientsqn of (A.1) but being an integer it is aconstantfunction of the latter. Therefore, to
establish its value we can choose some appropriate point in the space ofqn: namely, the one
for whichQ(x,E, λ), as defined by (A.3), becomes an even function ofx under the reflection
x → −x. To achieve this goal it is enough to continueqn to the point whereqn = qk+l−n,
n = l, l + 1, . . . , (k + l)/2. Then, the operationx →−x does not change in (A.3) the product
itself (the distribution of roots are then invariant under the operation) but changes eαx into
e−αx . Therefore,α = 0.

As an example, considerq(x,E, λ) given by (3.2) for which its distribution of roots is
shown in figure 2. We have for it

αe2x − 2βex + γ = (α − 2β + γ )ex
[
1− x

x+

] [
1− x

x−

]
×
∏
p=±

∏
n>1

[
1− x

xp + 2π in

] [
1− x

xp − 2π in

]
. (A.4)

We want to calculate with the help of (A.4) a change of phase ofq(x,E, λ) when
transporting it from pointx0 of the line Imx = π to the pointx0−2π i of the line Imx = −π .
We note that as follows from (A.4), the roots ofq(x,E, λ) lying at large distances from the
points considered have almost no contribution to the values ofq(x,E, λ) in the considered
strip (their product in (A.4) is close to 1). Therefore, we can take a sufficiently large but finite
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number of roots around the considered points to perform the calculations needed (eventually
we can take the limit of the infinite number of roots).

Starting from pointx0 we can considern pairs of roots lying above the line Imx = π (n
is large) andn pairs of roots lying below the line. The arguments ofx0 − xk we take to be
positive forxk lying below the line Imx = π and negative in the opposite case. It is clear
that the net result of summing the corresponding arguments of the product in (A.4) is zero.
There is, however, still a non-zero contribution to the argument ofq(x0, E, λ) coming from
the factor ex of (A.4). It amounts, of course, toπ and this is the total argument ofq(x0, E, λ).

At the pointsx0−π i our calculations are similar. Keeping thesameset of roots as chosen
previously we see that to the total phase of the product atx0 − π i contribute only the two
most distant pairs of roots lyingabovethe line Imx = π , so according to our convention
this contribution amounts to 4(−π/2) = −2π (in the limit of the root number going to
infinity). Together with the argument−π provided by the factor ex we get the argument of
q(x0−π i, E, λ) to be equal to−3π . Therefore, the total change of the argument ofq(x,E, λ)

between the lines considered is equal to−4π .

Appendix B

We shall collect here all the superpotentialsφk corresponding to the potentialsVk, k = 1, . . . ,8:
i.e. to the first eight listed in section 4 and to the last two discussed in the latter part of that
section (formula (3.18)). We shall also collect all their broken partners with the corresponding
method of symmetry breaking described by points 20–40 in section 4. The corresponding
functionsF1(φ) andF2(φ) are also given together with the coefficientsak, bk, ck, k = 1, 2, of
their asymptotic expansions whenφ→∞.

10

φ1(x, λ) = |α|ex − β

|α| +
1

2λ

F1(φ1) = F2(φ1) = φ1 +
β

|α| +
1

2λ

b1 = 1 ε0 = −
(
β

|α| −
1

2λ

)2

.

40

φ1(x, λ) = −|α|ex +
β

|α| +
1

2λ

F1(φ1) = F2(φ1) = φ1− β

|α| +
1

2λ

b1 = 1 ε0 = −
(
β

|α| +
1

2λ

)2

.

10

φ2(x, λ) = −|2l + 1| + 1

2λx
+

λα

|2l + 1| + 1

F1(φ2) = λ(2|2l + 1| + 1)
(φ2 − αλ

|2l+1|+1)
2

(|2l + 1| + 1)2
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F2(φ2) = 2λ
(φ2 − αλ

|2l+1|+1)
2

|2l + 1| + 1

c1 = λ 2|2l + 1| + 1

(|2l + 1| + 1)2
c2 = 2λ

|2l + 1| + 1

ε0 = − (λα)2

(|2l + 1| + 1)2

β = l(l + 1)

λ2
> 0.

40

φ2(x, λ) = |2l + 1| − 1

2λx
− λα

|2l + 1| − 1

F1(φ2) = −λ(2|2l + 1| − 1)
(φ2 + αλ

|2l+1|−1)
2

(|2l + 1| − 1)2

F2(φ2) = −2λ
(φ2 + αλ

|2l+1|−1)
2

|2l + 1| − 1
c1 = −λ 2|2l + 1| − 1

(|2l + 1| − 1)2
c2 = − 2λ

|2l + 1| − 1

ε0 = − (λα)2

(|2l + 1| − 1)2

β = l(l + 1)

λ2
> 0.

10

φ3(x, λ) = |α|x − |2l + 1| + 1

2λx

F1(φ3) = λ(2|2l + 1| + 1)

[
φ2

3 + 2|α| |2l + 1| + 1

λ

] 1
2 φ3 + (φ2

3 + 2|α| |2l+1|+1
λ

)
1
2

2(|2l + 1| + 1)2

+
|α|

2|2l + 1| + 2

F2(φ3) = λ
[
φ2

3 + 2|α| |2l + 1| + 1

λ

] 1
2 φ3 + (φ2

3 + 2|α| |2l+1|+1
λ

)
1
2

|2l + 1| + 1

c
(1)
1 = λ

2|2l + 1| + 1

(|2l + 1| + 1)2
c
(1)
2 =

2λ

|2l + 1| + 1
c1(2) = c2(2) = 0

ε0 = (|2l + 1| + 2)
|α|
λ

β = l(l + 1)

λ2
> 0.

20: we get this case from 10, substituting|2l + 1| by−|2l + 1|;
30: we get this case from 10 by the substitution|α| → −|α|;
40: we get this case from 10, substituting|2l + 1| by−|2l + 1| and|α| by−|α|.
10

φ4 = |2l + 1| − 1

4λ
tanh

x

2
+

4λα

|2l + 1| − 1

F1(φ4) = −λ(2|2l + 1| − 1)

(
φ4 − 4λα

|2l+1|−1

|2l + 1| − 1

)2

+
2|2l + 1| − 1

16λ



388 P Milczarski and S Giller

F2(φ4) = −2λ
(φ4 − 4λα

|2l+1|−1)
2

|2l + 1| − 1
+
|2l + 1| − 1

8λ

c1 = −λ 2|2l + 1| − 1

(|2l + 1| − 1)2
c2 = − 2λ

|2l + 1| − 1

ε0 = −
[ |2l + 1| − 1

2λ
− 2λα

|2l + 1| − 1

]2

α + β = l(l + 1)

(2λ)2
> 0.

40: we get this case from 10 by the substitution|2l + 1| → −|2l + 1|.
10

φ5 = −|2l + 1| + 1

4λ
coth

x

2
− 4λα

|2l + 1| + 1

F1(φ5) = λ(2|2l + 1| + 1)

(
φ5 + ( 4λα

|2l+1|+1)
2

|2l + 1| + 1

)2

− 2|2l + 1| + 1

16λ

F2(φ5) = +2λ
(φ5 + 4λα

|2l+1|+1)
2

|2l + 1| + 1
− |2l + 1| + 1

8λ

c1 = λ 2|2l + 1| + 1

(|2l + 1| + 1)2
c2 = 2λ

|2l + 1| + 1

a∞1 = a∞2 = |α| ε0 = −
[
−|2l + 1| + 1

2λ
+

2λα

|2l + 1| + 1

]2

α + β = l(l + 1)

(2λ)2
> 0.

40: we get this case from 10 by the substitution|2l + 1| → −|2l + 1|.
10

φ6 = |2l + 1| − 1

4λ
tanh

x

2
− |2l

′ + 1| + 1

4λ
coth

x

2

F1(φ6) = −λ
2
(2|2l + 1| − 1)

[
φ2

6 +
(2|2l + 1| − 1)(|2l′ + 1| + 1)

(2λ)2

] 1
2

×
φ6 + [φ2

6 + (2|2l+1|−1)(|2l′+1|+1)
(2λ)2 ]

1
2

(|2l + 1| − 1)2

−λ
2
(2|2l′ + 1| − 1)

[
φ2

6 +
(2|2l + 1| − 1)(|2l′ + 1| + 1)

(2λ)2

] 1
2

·
φ6− [φ2

6 + (|2l+1|−1)(|2l′+1|+1)
(2λ)2 ]

1
2

(|2l′ + 1| + 1)2

F2(φ6) = −λ
[
φ2

6 +
(|2l + 1| − 1)(|2l′ + 1| + 1)

(2λ)2

] 1
2 φ6 + [φ2

6 + (|2l+1|−1)(|2l′+1|+1)
(2λ)2 ]

1
2

(|2l + 1| − 1)2

−λ
[
φ2

6 +
(|2l + 1| − 1)(|2l′ + 1| + 1)

(2λ)2

] 1
2 φ6− [φ2

6 + (|2l+1|−1)(|2l′+1|+1)
(2λ)2 ]

1
2

(|2l′ + 1| + 1)2

c
(1)
1 = λ

2|2l′ + 1| + 1

(|2l′ + 1| + 1)2
c
(2)
1 = λ

2|2l + 1| − 1

(|2l + 1| − 1)2
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c
(1)
2 =

2λ

|2l′ + 1| + 1
c
(2)
2 = −

2λ

|2l + 1| − 1

ε0 = (l − l′ − 1)2

(2λ)2
α = l(l + 1)

(2λ)2
> 0 β = l′(l′ + 1)

(2λ)2
> 0

|2l + 1| − |2l′ + 1| > 2.

20: we get this case from 10 takingl, l′, satisfying|2l+1|− |2l′+1| < 2 or substituting|2l+1|
by−|2l + 1|;

30: we get this case from 10 substituting|2l′ + 1| by−|2l′ + 1| and next takingl, l′, satisfying
|2l′ + 1| ± |2l + 1| > 2;

40: we get this case from 10 substituting|2l′ + 1| by−|2l′ + 1| and next takingl, l′, satisfying
|2l′ + 1| ± |2l + 1| < 2.

10

φ7 = −|2l + 1| − 1

4λ
tan

x

2

F1(φ7) = −λ(2|2l + 1| − 1)
φ2

7

(|2l + 1| − 1)2
− 2|2l + 1| − 1

16λ

F2(φ7) = −2λ
φ2

7

|2l + 1| − 1
− |2l + 1| − 1

8λ

c1 = −λ 2|2l + 1| − 1

(|2l + 1| − 1)2
c2 = − 2λ

|2l + 1| − 1

ε0 =
( |2l + 1| − 1

4λ

)2

α = l(l + 1)

(2λ)2
> 0.

40: we get this case from 10 substituting|2l + 1| by−|2l + 1|.
10

φ8 = |2l + 1| + 1

4λ
tan

x

2
− |2l

′ + 1| + 1

4λ
cot

x

2

F1(φ8) = λ

2
(2|2l + 1| + 1)

[
φ2

8 +
(|2l′ + 1| + 1)(|2l + 1| + 1)

(4λ)2

] 1
2

×
φ8 + [φ2

8 + (|2l′+1|+1)(|2l+1|+1)
(4λ)2 ]

1
2

(|2l + 1| + 1)2
− λ

2
(2|2l′ + 1| + 1)

×
[
φ2

8 +
(|2l′ + 1| + 1)(|2l + 1| + 1)

4λ2

] 1
2

×
φ8− [φ2

8 + (|2l′+1|−1)(|2l+1|+1)
(4λ)2 ]

1
2

(|2l′ + 1| + 1)2
+

(|2l + 1| − |2l′ + 1|)2
16λ(|2l + 1| + 1)(|2l′ + 1| + 1)

F2(φ8) = λ
[
φ2

8 +
(|2l′ + 1| − 1)(|2l + 1| + 1)

(4λ)2

] 1
2 φ8 + [φ2

8 + (|2l′+1|−1)(|2l+1|+1)
(4λ)2 ]

1
2

|2l + 1| + 1

−λ
[
φ2

8 +
(2|l′ + 1| − 1)(|2l + 1| + 1)

(4λ)2

] 1
2 φ8− [φ2

8 + (|2l′+1|−1)(|2l+1|+1)
(4λ)2 ]

1
2

(|2l′ + 1| − 1)2

c
(1)
1 = λ

2|2l + 1| + 1

(|2l + 1| + 1)2
c
(2)
1 = −λ

2|2l′ + 1| + 1

(|2l′ + 1| + 1)2
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c
(1)
2 =

2λ

|2l + 1| + 1
c
(2)
2 = −

2λ

|2l′ + 1| + 1

ε0 = 1

(2λ)2

(
l(l + 1) + l′(l′ + 1) +

1

2
(|2l + 1| + |2l′ + 1| + 2)

+
1

2
(|2l + 1| + 1)(|2l′ + 1| + 1)

)
α = l(l + 1)

(2λ)2
> 0 β = l′(l′ + 1)

(2λ)2
> 0.

20: we get this case from 10, substituting|2l + 1| by−|2l + 1|;
30: we get this case from 10, substituting|2l′ + 1| by−|2l′ + 1|;
40: we get this case from 10, substituting|2l + 1| by−|2l + 1| as well as|2l′ + 1| by−|2l′ + 1|.
10

φ9 = a tanx +
b

cosx

F1(φ9) = 1

(a2 − b2)2

(
bφ − a

√
φ2 + a2 − b2

)
[
a′
(
bφ − a

√
φ2 + a2 − b2

)
− b

(
aφ − b

√
φ2 + a2 − b2

)]
F2(φ9) = 1

(a2 − b2)2

(
bφ − a

√
φ2 + a2 − b2

)
[
a
(
bφ − a

√
φ2 + a2 − b2

)
− b

(
aφ − b

√
φ2 + a2 − b2

)]
c
(1)
1 =

a′ + b
(a + b)2

c
(2)
1 =

a′ − b
(a − b)2

c
(1)
2 =

1

a + b
c
(2)
2 =

1

a − b
α + β = l(l + 1)

λ2
> 0 α − β = l′(l′ + 1)

λ2
> 0

a = |2l + 1| + |2l′ + 1|
4λ

+
1

2λ
a′ = a − 1

4λ

b = |2l + 1| − |2l′ + 1|
4λ

20: we get this case substituting in 10, |2l + 1| by−|2l + 1|;
30: we get this case substituting in 10, |2l′ + 1| by−|2l′ + 1|;
40: we get this case substituting in 10, |2l + 1| by−|2l + 1| and|2l′ + 1| by−|2l′ + 1|.
10

φ10 = a tanhx +
b

coshx

F1(φ10) = 1

4λ

(φ2
10− a2)2 + 4λ(φ2

10− a2)

(
a(φ2

10− a2 − b2)− ibφ10

√
φ2

10− a2 − b2

)
(b2 − a2)(φ2

10− a2) + 2a2b2 + 2iabφ10

√
φ2

10− a2 − b2

F2(φ10) = (φ2
10− a2)

a(φ2
10− a2 − b2)− ibφ10

√
φ2

10− a2 − b2

(b2 − a2)(φ2
10− a2) + 2a2b2 + 2iabφ10

√
φ2

10− a2 − b2
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c
(1)
1 = −

1

a − ib
− 1

4λ

1

(a − ib)2
c
(2)
1 = −

1

a + ib
− 1

4λ

1

(a + ib)2

c
(1)
2 = −

1

a − ib
c
(2)
2 = −

1

a + ib

α = b2 − l(l + 1)

λ2
β = |b|(|2l + 1| + 2) a = |2l + 1| + 1

2λ
> 0

b > 0 l(l + 1) > 0.

40: we get this case substituting in 10, |2l + 1| by−|2l + 1| or allowing l to vary in 10 in the
segment−1< l < 0 (the allowedb is then negative in both cases).

10

φ11(x, λ) = |α|x φ′11(x, λ) = |α|
F1(φ, λ) = F2(φ, λ) ≡ |α|

ε0 = |α|
λ
.

40: we get this case substituting in 10, |α| by−|α|.

Appendix C

We demonstrate here the particularities of obtaining formula (6.10) for the potentialV9(x, λ) ≡
V9,−(x, λ).

There are three possibilities of breaking spontaneously the supersymmetry for this case.
We shall choose only one of them corresponding to the first of the three cases listed in
appendix B.

Consider, therefore, relation (6.14) using the superpotentialsφ9(x, λ) given above. First
consider case 10 of the exact supersymmetry. The corresponding Riemann surfaceRφ9 is
depicted in figure 10. This is a two-sheeted surface with the branch points atφ9 = ±i(a2−b2)

1
2 .

The latter are the unique singularities of the integrand of the following integral:∮
Kφ9

[√
φ2

9 −
1

λ
F1(φ9)− Ẽ −

√
φ2

9 − Ẽ
]

dφ9

F2(φ9)
(C.1)

(since the roots ofF2 atφ9 = ±ia are also the roots ofF1).
Rφ9 is, clearly, a map of the basic period strip−π 6 x 6 π of thex-plane (see figure 9),

so that the four turning points ofq9,−(x, λ,E) from this strip are mapped pairwise intoRφ9:
the two from segment(−π/2, π/2) into sheet (a) of figure 10 and the other two into the second
one. It is also easy to note that in quantization formulae (6.1) and (6.2) the contourK in figure 9
can be substituted by contourK ′, surrounding the next two turning points, the latter contour
being related to the joined symmetry operations:x → x + π andx → −x. The contours are
mapped intoRφ9 asK1,φ andK2,φ , respectively, the latter surrounding the respective pairs of the
turning points pictured onRφ9 (see figure 10). Therefore, for the quantization formulae (6.1)
and (6.2) we can write

−λ
∮
K1

√
φ2

9 −
1

λ
φ′9 +

δ

λ2
− Ẽ dx = −λ

2

[ ∮
K1

+
∮
K2

]√
φ2

9 −
1

λ
φ′9 +

δ

λ2
− Ẽ dx

= − λ
∮
K1

√
φ2

9 − Ẽ dx − λ
2

[ ∮
K1,φ

+
∮
K2,φ

]
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×
[√

φ2
9 −

1

λ
F1(φ9)− Ẽ −

√
φ2

9 − Ẽ
]

dφ9

F2(φ9)

= − λ
∮
K1

√
φ2

9 − Ẽ dx − λ
2

×
[ ∮

K∞1,φ

+
∮
K∞2,φ

][√
φ2

9 −
1

λ
F1(φ9)− Ẽ −

√
φ2

9 − Ẽ
]

dφ9

F2(φ9)

(C.2)

whereK∞1,φ andK∞2,φ are the contours obtained by obvious deformations of the contours
K1,φ andK2,φ , which contain all the singularities ofF1,2(φ9). Making use of the explicit forms
of F1,2(φ9) as given in section 4, we can calculate the last integral in (C.2) obtaining for it the
value +iπ . Together with (6.2) this gives result (6.1).

Consider now the broken case 20 of the superpotentialφ9. The corresponding basic period
strip ofq9,−(x, λ,E) and the quantization contoursK1 andK2 transform intoRφ9, as is shown
in figure 11. Once again, we can write the sequence analogous to (C.2) by deforming the
contoursK1,φ andK2,φ of figure 11 intoK∞1,φ andK∞2,φ , respectively, to perform the final
integration obtainingagain +iπ and consequently the exact formula (6.1). Of course, the
starting value ofm can now be zero.

Appendix D

We shall show here that the shape invariance condition (6.12) does not prevent, in some obvious
way,F1,2(φ) to diverge with any power ofφ whenφ→∞. But if we limit the corresponding
divergence of the ‘shifted’ superpotentialφ1 = φ(x, λ, a1) a1 = f (a) to the linear one then
the divergence ofF2(φ) cannot be faster thanφ2.

To this end, let us rewrite (6.12) in terms of superpotentials. We get

φ2(x, λ, a) +
1

λ
φ′(x, λ, a) = φ2(x, λ, a1)− 1

λ
φ′(x, λ, a1) +R(a1)

a1 = f (a).
(D.1)

Equation (D.1) is satisfied whenx is taken to be the same on both the sides.
Puttingφ ≡ φ(x, λ, a) andφ1 ≡ φ(x, λ, a1) and inverting both the latter identities with

respect tox, we can write

x(φ, λ, a) = x(φ1, λ, a1). (D.2)

Next, taking into account that in (D.2)a1 = f (a) we can solve the latter with respect toφ1 to
get

φ1 = φ̃(φ, λ, a) ≡ φ(x(φ, λ, a), λ, f (a)). (D.3)

Introducing further the latter function, as well as the functionF2(φ, a) (≡φ′(x(φ, a), a))
to (D.1), we obtain

φ2 +
1

λ
F2(φ, λ, a) = φ̃2(φ, λ, a)− 1

λ
φ̃′φ(φ, λ, a)F2(φ, λ, a) +R(a1). (D.4)

Consider now (D.4) on some sheet of theφ-Riemann surface upon which this equation is
defined. Then assuming that forφ large enough all the terms in (D.4) behave holomorphicly
we can easily see that (D.4) is satisfied asymptotically forφ → ∞ if φ̃1 grows linearly with
φ, whilstF2(φ, λ, a) can grow withany finite power ofφ.

However, if this growth is faster thanφ2 then (D.4) can be satisfied only ifφ̃ ∼ −φ with
φ→∞. On the other hand, if̃φ ∼ (1 + c

λ
)φ in the last limit then from (D.4) it follows easily

that in such a caseF2(φ, λ, a) ∼ c2φ
2.
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